Gas Hydrate Field Experiments on the Alaska North Slope: Project Status

Ray Boswell

Methane Hydrate Federal Advisory Committee Meeting: Galveston, TX

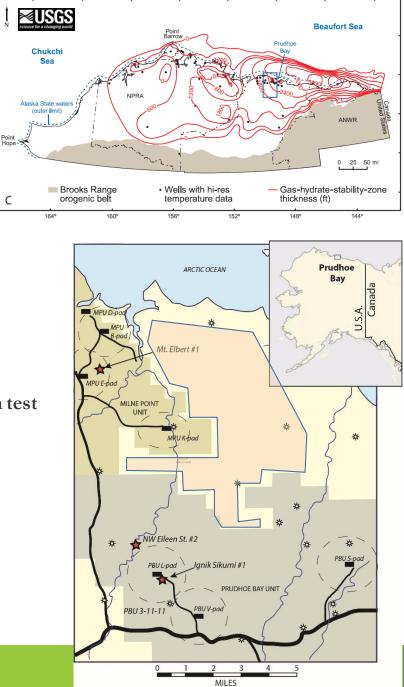
February X, 2020

ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Status of GH Science (wrt Production Tech.)

Extended Duration Field Tests are the Global #1 Priority in GH R&D

- Active government-led R&D underway in the US and by key US allies for whom future energy security is a priority for US and global energy security. (Japan, India, S. Korea).
- These nations have invested \$1billion+ in field programs but have to date been unable to observe hydrate production response for sufficient duration.
 - Onshore (Canada) \rightarrow lack of infrastructure
 - Offshore (Japan) \rightarrow high costs and operational complexity
- A two-year effort by US, Japan, and State of Alaska indicated high costs and risks of test outside the PBU infrastructure area.
- ANS greater PBU region provides the only known location to enable viable long-term scientific testing.


Quick History

GH Evaluation in Alaska and N. Canada

- **GH system known in Arctic since the 70s** (industry tests NW E-St-2. USGS. Mallik beginning '98)
- 2004: "Hot Ice" Project (failed G&G effort)
- 2007: MPU Mt Elbert Project (off ice: G&G and operational success)
- 2006-07: Japan-Canada Mallik Test (successful depressurization demonstration)
- 2010: PBU L-pad long-term depressurization & injection test (legal/logistical barriers)
- 2011-12: PBU "Iġnik Sikumi" test (on ice test focused on gas injection and well operations)
- 2013: Unit interest waned

NERGY

• 2014-2015: US-Japan AK State Lands Review (w/ DNR) (unacceptable geologic and operational risks)

71

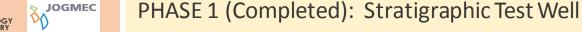
69

68

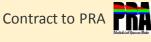
67

Project Structure

Memorandum of Understanding (4/2013)


Memorandum of Understanding (11/2014) CRADA (12/2018)

JOGMEC

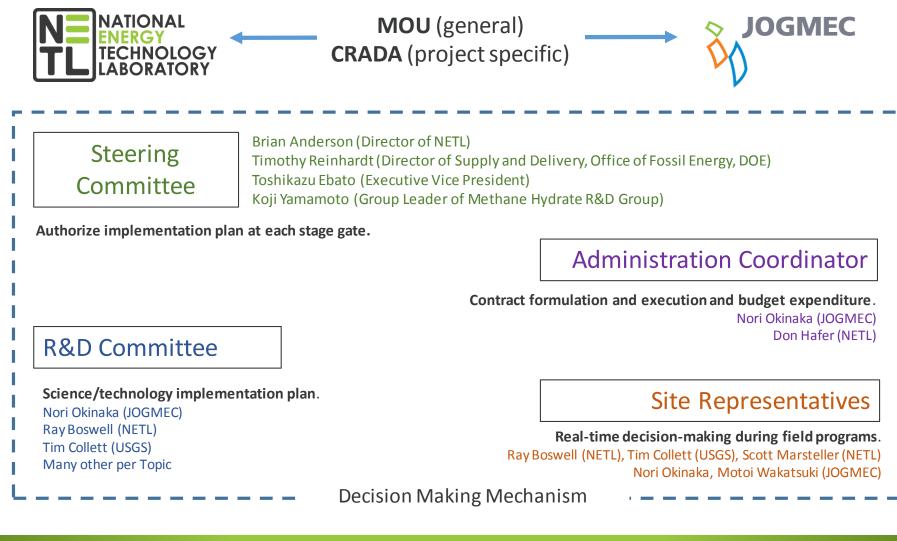

CONTRACTUAL

BERKELEY LAB

Drilling Services Agreement with BPXA

PHASE 2 (Planned): Production Test Wells

(w/2nd Monitoring well and surface facilities)



Project Structure

NATIONAL ENERGY TECHNOLOGY LABORATORY

Jointly funded and managed

ENERGY DOE-FE - METI (Japan) Sol: DOE/FE – AK DNR MOU

6

Program Objectives

Robust, Proven, State-of-art Equipment for Well Sampling, Completion, and Monitoring

Science

Full characterization of GH systems \rightarrow Physical Properties, Geomechanics, Petrophysics

- Sidewall pressure coring (STW)
- Whole core pressure coring (GDW)
- Full suite LWD and wireline logs (all wells)

Observation of controlled perturbation \rightarrow Dynamic Geomechanics, Petrophysics, Heat Flow

- · Fiber-optic Strain, Acoustic, and Temperature Monitoring
- Pressure monitoring (cables and/or gauges)
- Monitoring inside (PTW) and outside (PTW, STW, GDW) casing

Time SeriesVSP via DAS \rightarrow Reservoir System Response

Technology

Assessment of Mitigations to emergent production challenges (heat flow, permeability, geomechanics)

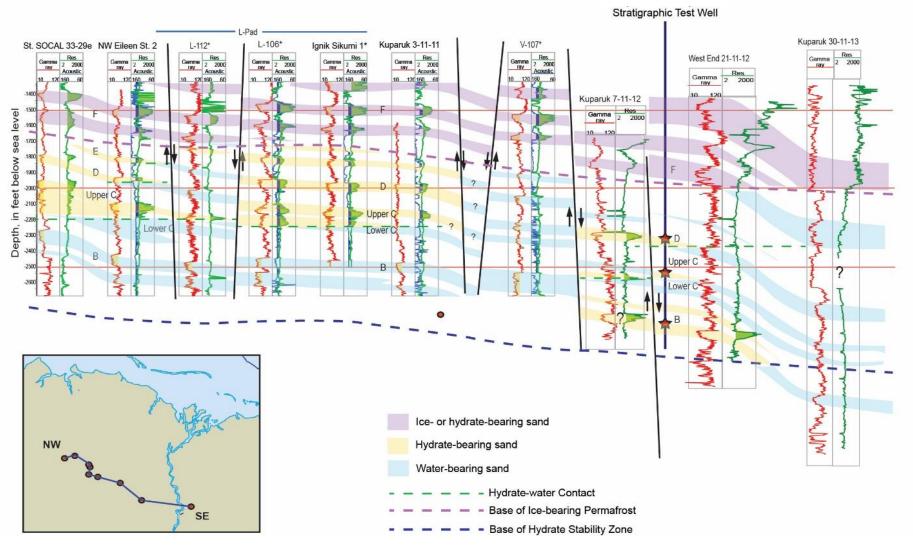
- Sand control/completion/stimulation/shut-in
- Artificial Lift; Hydraulic isolation

JR

Improved evaluation/prediction of productivity and potential

• Numerical simulation (needed validation/calibration datasets)

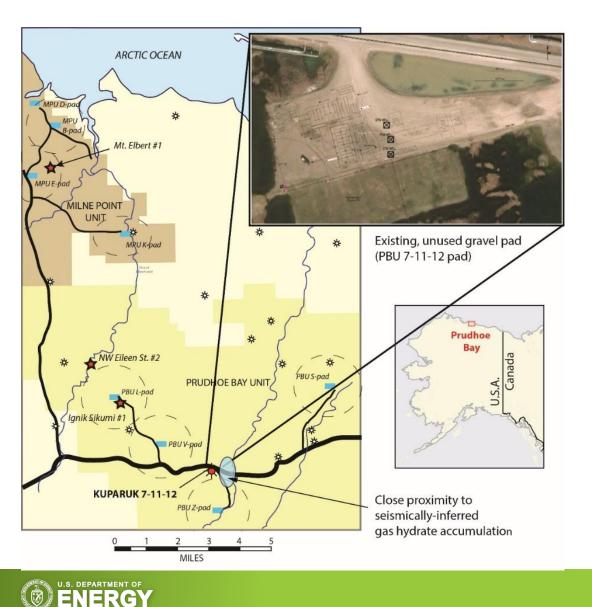
Examples of tools under consideration



Review of Sites: Westend PBU

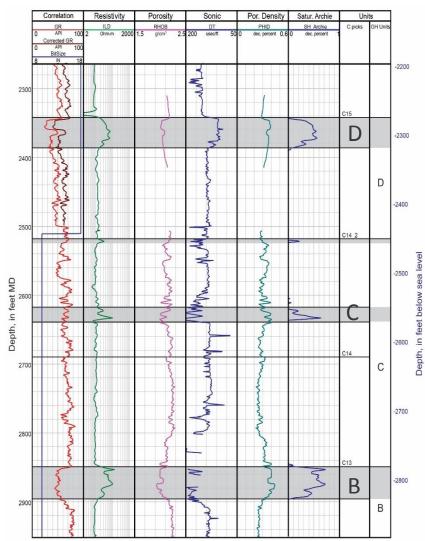
NATIONAL ENERGY TECHNOLOGY LABORATORY

SE


NW

2016: Return to the Prudhoe Bay Unit

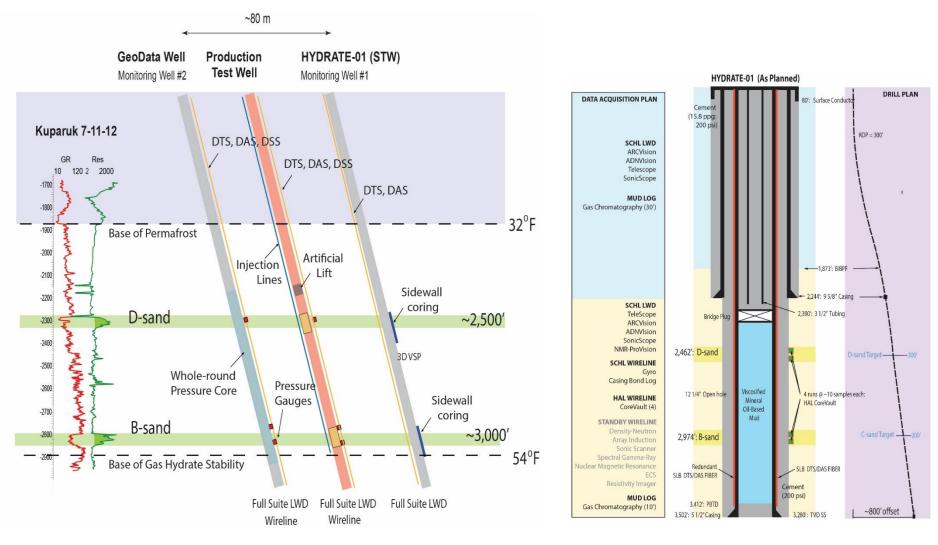
- Working Interest Owners agreed to consider a test that could be conducted with no interference to ongoing operations
- AK DNR/PBU provide regional seismic data
- Promising location identified accessible from an unused gravel pad along a year-round road.
- Existing well and seismic data evaluated to assess geologic risk


8

Kuparuk 7-11-12 Well Site (PBU)

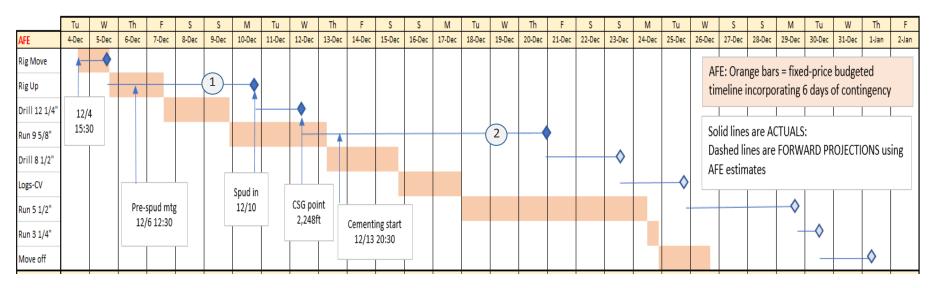
Confirmed GH in D sand. Limited GH in C sand. Uncertain GH in B sand.

- Two older exploration wells from pad
- D-sand: GH likely (low geologic risk)
- C-sand: limited charge.
- B-sand: HC-charge but poor log quality.
- Drilling-disturbed at time of logging
- B-sand predicted to occur within 100' of BGHS
- Slight well deviation: BHL away from old boreholes
- Assess potential for nearby free-gas or water
- Map faults



Proposed 7-11-12 Field Program

Approved by PBU: BPXA agrees to operate STW (only) as a part of Unit Business.



December 2018 STW Operations

Safe Operations; no injuries or HSE events.

AFE = planned 22-day operational timeline including BAU contingencies = basis for the Fixed-Price estimate.

ACTUAL includes several minor incidences and two primary events of lost time

- (1) An initial 3 day delay prior to well spud that was the result of PBU Operations.
- (2) A second 5-day delay occurred during running surface casing and setting up mud temp controls to drill out.

Ultimately ~25 days of operations (3 days over fixed-price plan).

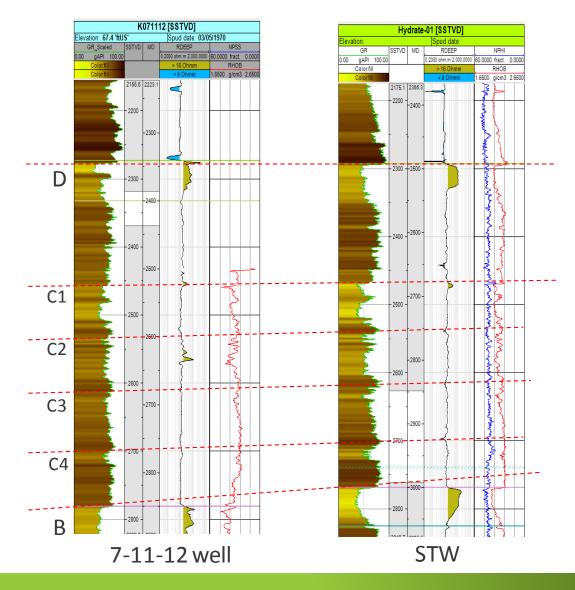
Data Acquisition – Results Detail

 Drilling/wellbore quality (to allow reliable data collection) FULLY ACHIEVED: both targets penetrated within provided target*. Mud temperature maintained within set limits (as modified). No incidents of induced GH dissociation; hole in gauge. NOTE: Log data indicate 14' fault present in close proximity to wellbore. 		
Logging-while-drilling (data to confirm/characterize reservoir condition)	ADN-6	167'
• FULLY ACHIEVED: outstanding quality data with all tools!		
• NOTE : Sonic data – muted reservoir response in lower portion of B target. Verified proper tool response through two additional MAD passes across the reservoir.	proVISION 675	145'
	SonicScope 675	107'
Contingency Wireline data		
• DEFERRED PER PLAN: not required due to high quality of LWD data	TeleScope 675 MWD	74'
Sidewall pressure cores (to allow grain size analyses & test well completion design)	arcVISION 675	46'
• FULLY ACHIEVED: 34 samples recovered spanning full extent of both reservoirs.		
• NOTE: Attempts (in US and in Japan) to gather additional petrophysical data from the best samples ongoing.	2	
Fiber Optic cable installation (to enable use of STW as monitoring well)		
• FULLY ACHIEVED: two (one as backup) distributed temperature/acoustic sensor cable packages were		
installed on outside of casing and successfully tested.	2	
	8.5" PDC Bit	0'

Bottom-hole assembly for main hole (from Schlumberger)

Easily Correlated Short Step-out

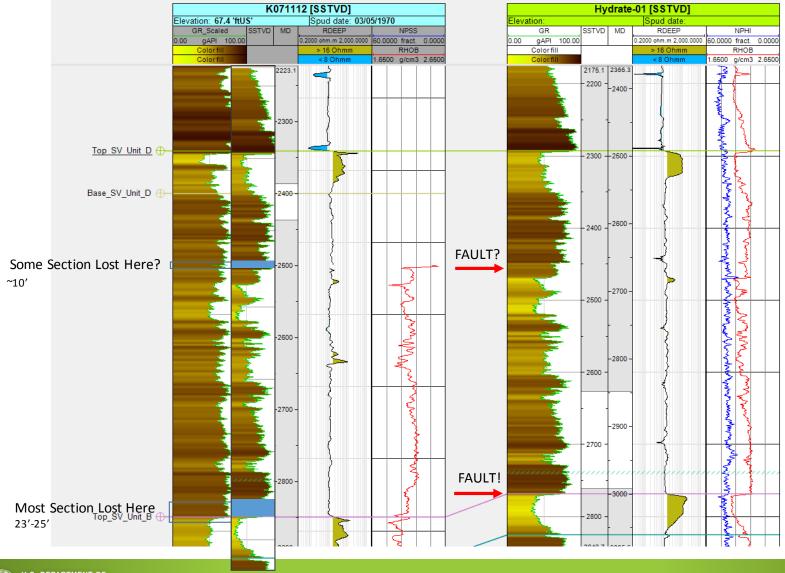
Unit D

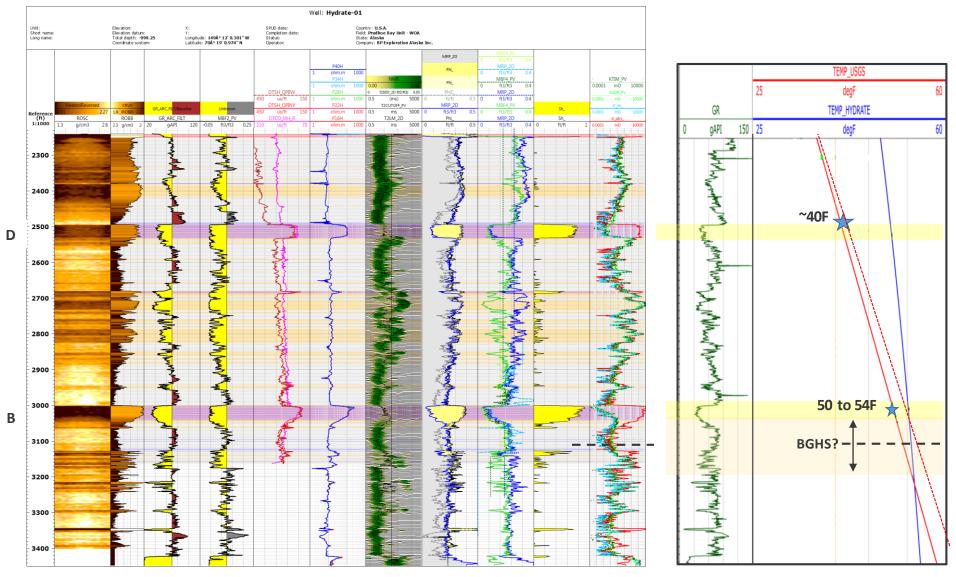

• In better condition (no internal shale break; cleaner top)

Unit C

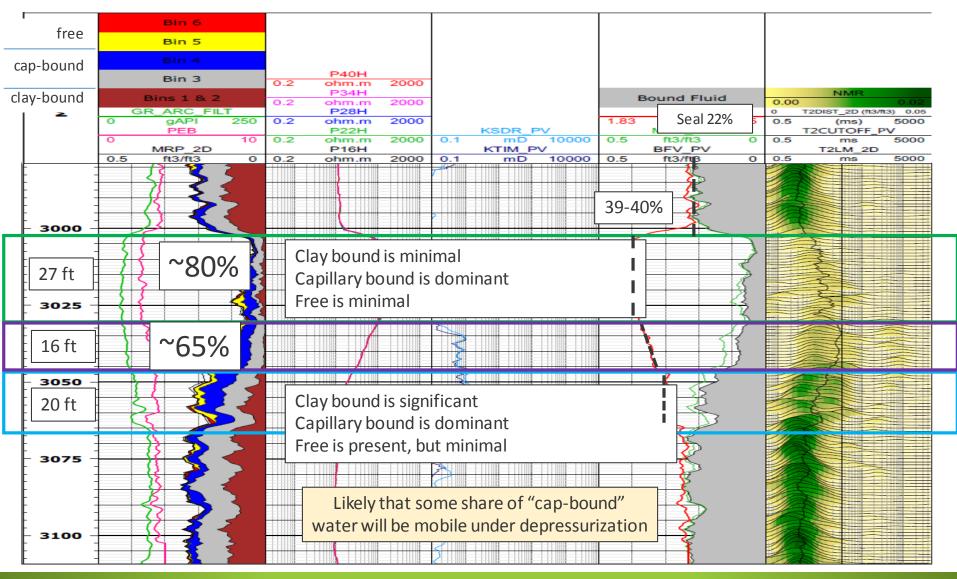
• Virtually identical.

Unit B


• In better condition (lower GR); more uniform RES and DEN); clear GH indicators (SON)


Inferred Faulting in the Hydrate-01 well

Summary STW Log Data



Log Data: Unit B

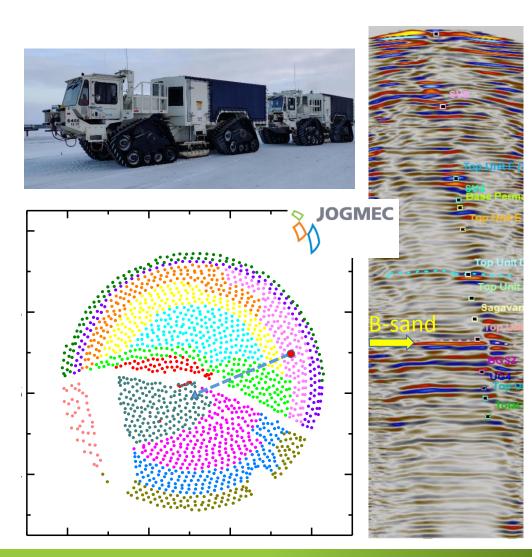
Log Data: Unit D

Ongoing Site Monitoring

Funded by JOGMEC

DAS-VSP utilizing FO DAS cables

- Among largest known DAS-VSP acquisitions to date
- Local structural/stratigraphic heterogeneity
- Regional well to seismic tie
- Phase distribution
- Additional 3D-VSPs planned (before, during and after testing).

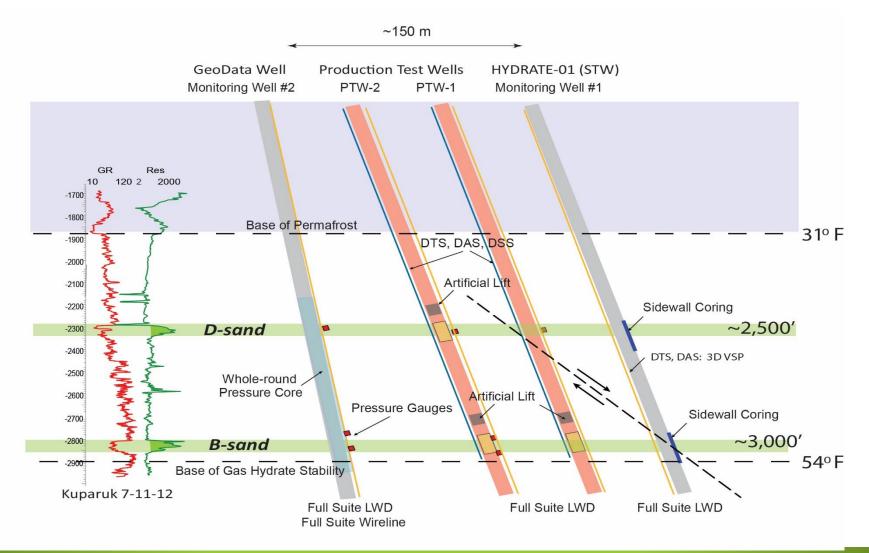

Sub-seismic fault imaged

• Interpreted from log data

U.S. DEPARTMENT OF ENERGY

• Not visible on surface 3-D seismic

Baseline surveys for elevation (subsidence)



Current Testing Plan

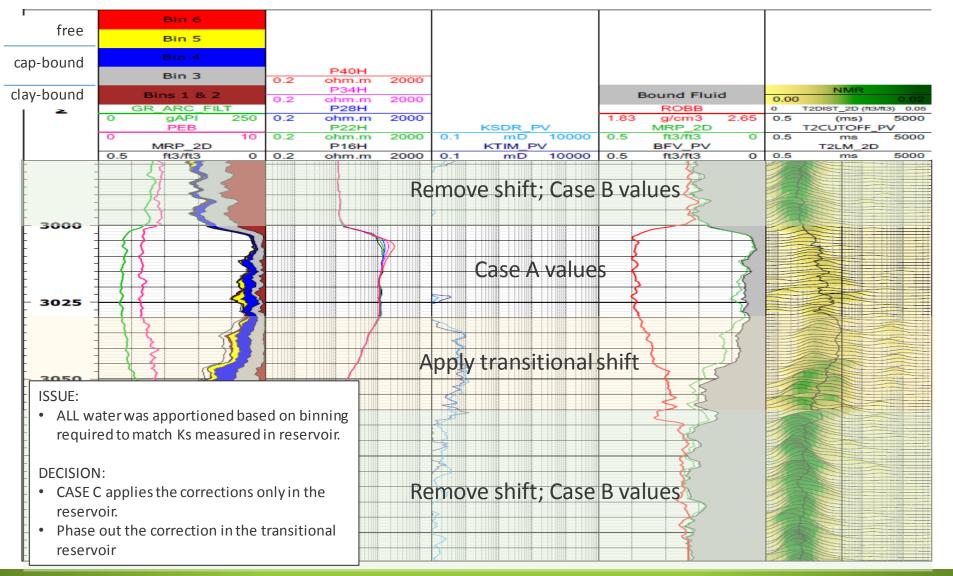
Addition to the plan of a second PTW to mitigate risk/expand test flexibility

GDW and PTW-1, PTW-2 Data Acquisition

- **GDW LWD:** TeleScope; arcVISION; adnVISION; SonicScope; PowerDrive.
- **GDW WLL:** Not contingent. PEX; RtScanner; SonicScanner; CMR/MRScanner; HNGS; QuantaGeo; ECS
- **GDW:** Left in accessible state for production logging: Gyro; IsolationScanner; RST
- **PTWs Surface LWD:** Simplify (PowerDrive; MWD; GR) to maximize hole quality (assuming data success in GDW)
- **PTWs Main LWD:** As GDW, with WLL (as GDW) contingent on data quality
- Utilize HPTC in GDW. Stage PCATS labs on location. No planned conventional coring
- **GDW-PTW Mud-logging** as STW with addition of isotubes.

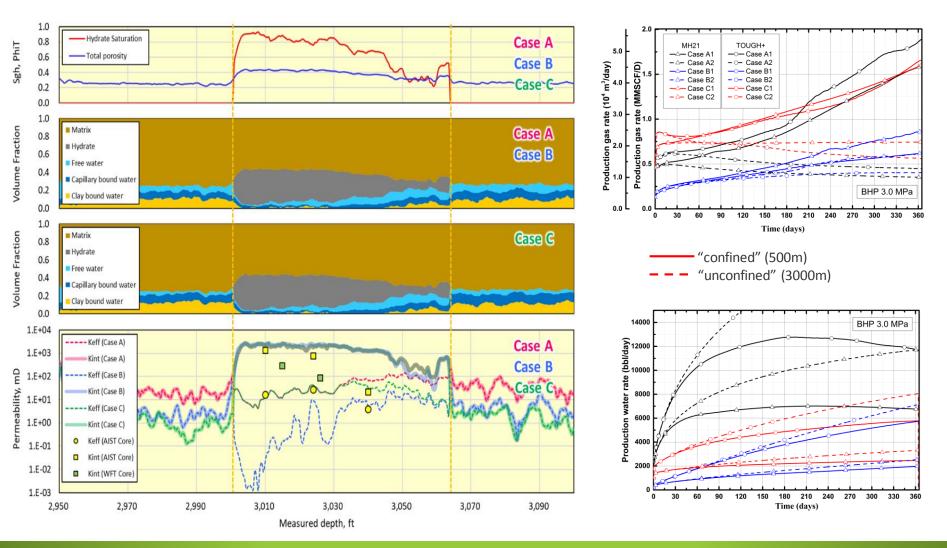
	STW	GDW	PTW1	PTW2
DTS	~	~	~	~
DAS	~	~	~	~
TAS		~		
P behind CSG		~	~	~
P tubing			~	~
DSS		~	~	~

Modeling: Setting Input Model



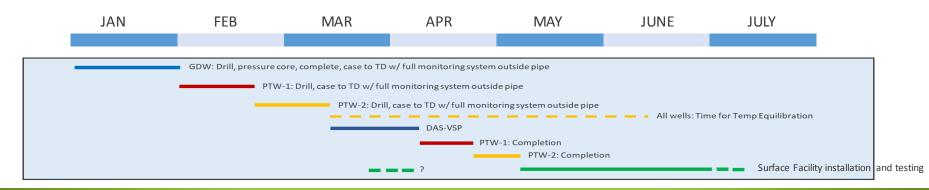
		c	ASE A & B	WATER DI	STRIBUTIC	N	CASE A (core) CASE B (NMR log)				CASE C WATER DISTRIBUTION					CASE C (Water)		
Porosity model	Sh	Volume ratio (Total volume=1)					Keff	Kintrinsic	Keff	Kintrinsic		Volume ratio (Total volume=1) Keff				Keff	Kintrinsic	
PhiT	Hydrate saturation within PhiT	CBW Volume	BFW volume	FFW Volume	Hydrate volume	Matrix volume	Add cutoff: Ki min (=0.001) set	Add cutoff: Ka min constrain		Lower of TC		CBW Volum		FFW Volume	Hydrate volume	Matrix volume	Add cutoff: Ki min (=0.001) set	Add cutoff: Ka min constrain
(2.69- Rho_c) /(2.69-1)	DMR method in reservoirs. Set to Zero elsewhere	<3ms	3ms-10ms	>10ms + "False hydrate"	PhiT*Sh	1- (CBW+BF W+FFW+V mh)	= Kintrinsic where Sh=0 <u>Final Ki</u>	(=0.001) <u>Final Ka</u>		and KC methods		<3ms share fa hydrat	lse false	>10ms + "False hydrate"	PhiT*Sh	1- (CBW+BF W+FFW+V mh)	= Kintrinsic where Sh=0 <u>Final Ki</u>	(=0.001) <u>Final Ka</u>
ft3/ft3	ft3/ft3	ft3/ft3	ft3/ft3	ft3/ft3	ft3/ft3	ft3/ft3	mD	mD	mD	mD		ft3/ft3	ft3/ft3	ft3/ft3	ft3/ft3	ft3/ft3	mD	mD
0.248	0.000	0.120	0.075	0.052	0.000	0.752	11.502	11.502										
0.250	0.000	0.111	0.074	0.065	0.000	0.750	17.111	17.111	2.414									
0.240	0.000 0.000	0.105	0.076	0.059	0.000	0.760	18.039	18.039	1.729									
0.237	0.000	0.106 0.097	0.074	0.057	0.000	0.763	16.766 22.158	16.766 22.158	1.557 2.218	1.557 2.218								
0.233	0.000	0.097	0.073	0.082	0.000	0.756	22.138	29.720	4.527	4.527								
0.259	0.000	0.080	0.072	0.108	0.000	0.741	53.061	53.061	11.462	11.462				· .				
0.271	0.000	0.082	0.065	0.123	0.000	0.729	57.807	57.807	18.538	18.538		We have three modeling cases to constrain gas and water rates						
0.305	0.000	0.080	0.066	0.159	0.000	0.695	97.198	97.198	51.186	51.186								
0.333	0.538	0.066	0.061	0.027	0.179	0.667	26.415	198.542		159.384								
0.367	0.648	0.049	0.059	0.021	0.238	0.633	29.495	451.547		518.197	·							
0.391	0.740	0.030	0.053	0.019	0.289	0.609	27.706	894.191	0.054	1389.700		 Conservative case (CASE B) based on NMR- Ks Aggressive case (CASE A) based on Core-correction of NMR to the entire section. 						n
0.407	0.805	0.020	0.043	0.017 0.014	0.328 0.363	0.593 0.578	20.741	1315.149	0.029	1743.639								
0.422	0.860 0.889	0.009 0.005	0.030	0.014	0.363	0.578	14.050 9.903	1900.280 2247.402	0.012	2152.527 2398.479								
0.430	0.889	0.005	0.031	0.012	0.302	0.570	9.903 8.906	2544.184	0.008	2713.800								
0.442	0.905	0.005	0.029	0.008	0.400	0.558	7,742	2528.012	0.001	2715.411								
0.435	0.905	0.007	0.026	0.008	0.393	0.565	7.114	2264.573	0.002	2491.406	,							e
0.424	0.906	0.007	0.024	0.009	0.384	0.576	6.479	2024.362	0.002	2220.717	,							
0.423	0.909	0.010	0.020	0.008	0.384	0.577	5.523	1870.950	0.002	2158.956	5							
0.431	0.920	0.009	0.017	0.008	0.396	0.569	4.634	2078.145	0.001	2359.881		•	Most Likely case (CASEC) based on					
0.432	0.906	0.011	0.015	0.015	0.392	0.568	6.319	2043.033	0.009	2378.085								
0.432	0.919	0.003	0.020	0.012	0.397	0.568	5.373	2368.485	0.004	2461.621		core-correction only in the main						
0.435	0.929 0.899	0.002	0.021	0.008	0.405 0.393	0.565	4.253 8.702	2508.381 2454.864	0.001	2566.160		reservoir units AND removal of log						
0.437	0.899	0.004	0.025	0.016	0.393	0.563	8.702 10.347	2454.864 2496.709	0.012	2581.186 2559.931		resolution "boundary" effects						
0.435	0.888	0.002	0.027	0.018	0.382	0.565	10.547	2355.308	0.020	2421.566								
0.430	0.872	0.002	0.033	0.013	0.302		13.270	2243.633										

Most Likely Case

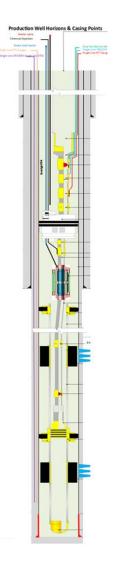


Modeling: NETL/JOGMEC

Code Comparision - Constraint on max gas and water rates to guide surface facility design


Key Components of Testing Plan

As distinct from PTW completion design


Base Production Method: Depressurization

- Maximize data interpretability by imparting a single driving force
- Employ a step-wise pressure reduction to max. scientific insight and to minimize operational risks associated with large drawdowns
- First step at P > GHS to assess water mobility.
- Add'l steps set at ~ 2.0 mPa (to be refined via focused engineering studies)
- Follow well intervention/stimulation protocols where reservoir response dictates
- At end of test, impart largest feasible pressure drop

- <u>Highest priority</u>: safety; reg. compliance; no disturbance to PBU Ops
- Focus: monitoring reservoir response
 - Periodic VSPs to assess system response (geometry/scale)
 - DTS/DSS and P-gauges in 4 wells to monitor dissociation reaction and impacts in 4D
- Focus: well design & survivability
 - Artificial lift: robust, viable across expected flow range
 - Flow assurance; pre-staged intervention: downhole heater
 - Sand control/Hydraulic isolation cased/perfed with screens; GeoFORM
 - Staged shut-in and restart procedures (nitrogen)
- Focus: water, gas, and solids handling
 - Water/Sand: local storage w/ sufficient excess. Trucking and disposalin unit facilities
 - Gas: local consumption.
- NOTE: all plans developed to-date by JOGMEC, USGS, DOE will be worked with TPO and PBU WIOs once testing program is authorized to proceed and TPO selected

Intervention Plan

Ongoing

Gas Rate (low, declining, erratic, persistently flat)

- Hydrate formation \rightarrow P drop and monitor
- Ice formation \rightarrow P drop and monitor: hot methanol
- Sand/fines blockage \rightarrow P cycling: acid?: re-perf
- Gas-Water block \rightarrow P cycling
- Reservoir Limitation \rightarrow stimulation... TBD
- Equipment failure \rightarrow shut in and repair

Excessive Sand (robust systems; cleanout options)

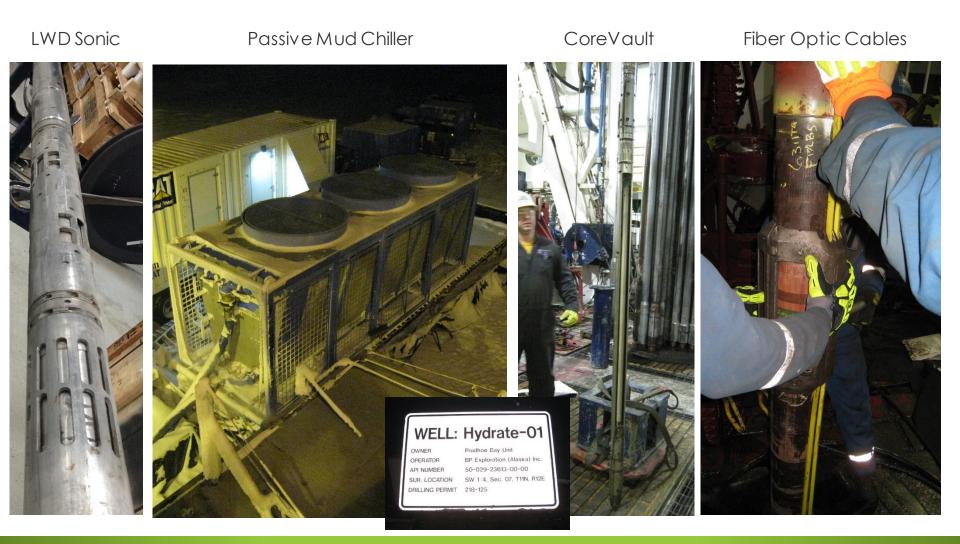
• Systems failure \rightarrow patience, move to D

Excessive Water (ensure adequate onsite storage)

• Reservoir \rightarrow P drop; P cycling, move to D

Next Project Phase: Status

As of February, 2020



- Initial Stratigraphic Test has confirmed site geologic feasibility
- Steering Committee approved effort to advance to next project phases.
- Limited business case for industry participation; however, PBU has desired to facilitate a "standalone" test.
- An atypical DOE/FE project context: directed to pursue science and technology w/o interested private R&D partners <u>to assume</u> <u>risks and share costs</u>
- Sustaining interest from our partners in Japan and from the State of Alaska.
- Impending exit of BPXA and entrance of Hilcorp, Alaska has challenged efforts to maintain schedule. Currently holding to plan for drilling as early as next winter season

THANK YOU

