

The #H2IQ Hour

Today's Topic:

The Latest on EERE's Hydrogen and Fuel Cells R&D Portfolio

This presentation is part of the monthly H2IQ hour to highlight research and development activities funded by U.S. Department of Energy's Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy (EERE)

The #H2IQ Hour

During Q&A session:

Please type your questions into the **Q&A Box**

∨ Q&A	>	<
All (0)		

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately...

RENEWABLE ENERGY

Update on DOE's Hydrogen and Fuel Cells R&D Portfolio

Dr. Sunita Satyapal, Director, U.S. Department of Energy Hydrogen and Fuel Cells Program, Fuel Cell Technologies Office

H2IQ Hour

February 18, 2020

Agenda

- Budget Update and Key Priorities
 - FY2020 Appropriations Plans
- Recent Activities
 - Workshops and Target Updates
 - H2@Scale New Demo Projects
- Collaborations
 - International Activities
 - Collaboration Announcements
- Funding Opportunities
 - Updates and Save the date for upcoming events

Key Programmatic Area: H2@Scale

H2@Scale: Enabling affordable, reliable, clean, **Includes Early stage R&D:** Funding and secure energy across sectors **Opportunity Announcements (FOAs) for** industry, universities and national labs, lydrogen nthetic including consortia Fuels Hydrogen Core Team: pgrading Oil / Power National Labs Generation Renewables Fertilizer FOA Hydrogen Nuclear Generation **University 8** National Industry Non-Profit Lab Metals **Electric Grid** Infrastructure Fossil End Use Government Heating Funding H2@Scale "consortium" **CRADAs** Infrastructure And includes later stage RD&D:

Leverages private sector for large-scale demos New H2@Scale demonstration projects announced Texas, Florida, Midwest, complements California deployments

CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')

Lab

Lab

Lab

SPPs

Budget

Fuel Cell Technologies Office (FCTO) within Energy Efficiency and Renewable Energy (EERE)

	FY 2018	FY 2019	FY 2020
Fuel Cell R&D	32,000	30,000	26,000
Hydrogen Fuel R&D	54,000	39,000	45,000
Hydrogen Infrastructure R&D*	-	21,000	25,000
Technology Acceleration	19,000	21,000	41,000
Safety, Codes, and Standards	7,000	7,000	10,000
Systems Analysis	3,000	2,000	3,000
Total	\$115,000	\$120,000	\$150,000

*Will be moved under Hydrogen Fuel R&D in FY 2021

FCTO – Hydrogen and Fuel Cells Breakdown FY 2020

*Will be moved under Hydrogen Fuel R&D in FY 2021

DOE Hydrogen and Fuel Cells Appropriations

DOE Office	Funding (in thousands)
EERE (FCTO)	\$150,000
Fossil Energy (SOFC)	\$30,000
Nuclear Energy	\$11,000*

* For coordination between NE and EERE FCTO on nuclear to hydrogen Office of Science, Basic Energy Sciences Funding is for FY18 ~ \$19 million for projects relevant to H2 and fuel cells (e.g. catalysis, etc.); FY 20 TBD For coordinated project with EERE ARPA-E- Funding based on specific program selected each year; FY20 TBD

Interest growing in

End use applications across sectors Heavy duty vehicles, steel manufacturing, ammonia, energy storage, liquid fuels, critical loads, natural gas blending, exports, and more

Opportunities Identified in H2@Ports, H2@Rail, H2@Datacenters Workshops

H2@Datacenters

- Collaboration between DOE, industry, end users
- RD&D & techno-economic assessment needs
 - Prime or backup power for critical loads of data centers
 - Scenario development to enable cost effective fuel cells and hydrogen storage
 - Potential additional revenue streams

H2@Ports

- Collaboration between DOE, DOT Maritime
 Administration, FCH JU, European Commission,
 global industry, end users and ports, states
- RD&D & techno-economic assessment needs
 - Power system options and TCO
 - Cluster approach to increase scale
 - Regulations and standards

TCO: Total cost of ownership

H2@Rail

- Collaboration between DOE, DOT -Federal Railroad Administration, global industry, end users, states
- RD&D & techno-economic assessment needs
 - Prime power system development
 - Rail system operations and TCO
 - Regulations, safety, codes, standards

Workshop details available at: https://www.energy.gov/eere/fuelcells/workshop-and-meeting-proceedings

Targets to Guide Long Term R&D for Heavy-Duty Vehicles

Fuel Cell Truck Targets Developed to Enable Comparable Total Cost of Ownership with Diesel Trucks

https://www.hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf

Table 1. Technical System Targets: Class 8 Long-Haul Tractor-Trailers

Characteristic	Units	Targets for Class 8 Tractor-Trailers			
Characteristic	Units	Interim (2030)	Ultimate ⁹		
Fuel Cell System Lifetime ^{1,2}	hours	25,000	30,000		
Fuel Cell System Cost ^{1,3,4}	\$/kW	80	60		
Fuel Cell Efficiency (peak)	%	68	72		
Hydrogen Fill Rate	kg H₂/min	8	10		
Storage System Cycle Life ⁵	cycles	5,000	5,000		
Pressurized Storage System Cycle Life ⁶	cycles	11,000	11,000		
Hudrogon Storago System Cost47.8	\$/kWh	9	8		
Hydrogen Storage System Cost ^{4,7,8}	(\$/kg H ₂ stored)	(300)	(266)		

Developed through industry workshop, input and analysis on long term stretch goals to guide R&D community

Compressed Gas Storage for Medium and Heavy Duty Transportation Workshop

Key Areas of Participant Interest								
Carbon Fiber Cost	Overall Cost of Storage/Station	Balance of Composite						
 Precursor cost is the largest component Strength remains an important quality Processing refinements could yield marginal gains 	 Storage designs influence station hardware and operation: Storage temperature limits while fueling Chillers required to reach -40°C Cold effects on reliability 	 Alternative resin systems: Cost reduction Thermal resistance Fiber/resin integration Fiber winding pattern/translation efficiency 						

For workshop presentations and summary report visit <u>https://www.energy.gov/eere/fuelcells/compressed-gas-storage-medium-and-heavy-duty-transportation-workshop</u>

Examples of Activities to Enable H2@Scale

Assessing resource availability. Most regions have sufficient resources.

4 new H2@scale demonstration projects in Texas, Florida and Midwest.

Includes 1 project by Office of Nuclear Energy

Hydrogen Demand Potential

Example of H2@Scale Project: Integrated Hydrogen Production and Consumption for Improved Utility Operations – Orlando, FL

Note: Based on original submission. To be updated based on project finalization

Example of H2@Scale Project: Electrolyzer Operation at Nuclear Plant and In-House Hydrogen Supply

Note: Based on original submission. To be updated based on project finalization

Example of H2@Scale Project: Demonstration and Framework for H2@Scale in Texas and Beyond

Note: Based on original submission. To be updated based on project finalization

Collaboration

IPHE: A Government Partnership on Hydrogen & Fuel Cells, working along with other global initiatives

Save the Date – March 18: Hydrogen as main topic in upcoming Nuclear Innovation Clean Energy Future (NICE) webinar

Opportunities for Hydrogen

<u>Topic</u>

In the lead up to the June 2020 Eleventh CEM meeting in Viña del Mar Chile, tune in to the webinar and hear how ministers and stakeholders plan to accelerate action to realize hydrogen's potential. Hear from experts from the United States, Canada, Japan and the IEA about new technologies in this arena that advance a clean and integrated systems approach.

<u>When</u> March 18, 2020, 8:00 am – 9:30 am EST Where To Register

https://attendee.gotowebinar.com/register/82 79771562413966605

Example of Collaboration: Global Center for H₂ Safety (CHS)

IPHE Steering Committee action: Increase awareness of safety partnership. Promotes safe operation, handling and use of hydrogen across all applications.

Announced February 2020: Industry and Government Collaboration Supporting American's Ingenuity and Enabling Technology Validation in Washington D.C.

The \$1M H-Prize Challenge Incentivized Innovation in Community H₂ Fueling

The prize-winning SimpleFuel[®] team developed an electrolyzer-based appliance capable of refueling a 700 bar fuel cell vehicle at a rate of 1 kg-H₂ in less than 15 minutes

U.S. Department of Energy Joins Industry to Collaborate on Transportation Technology Validation and Assessment

Byundai Motor Group Executive Vice Chairman Euisun Chung (left) and Under Secretary of Energy Mark W. Menezes (right)

DOE, Hyundai and SimpleFuel collaboration will include:

- Data collection and validation on **five** Hyundai Nexo fuel cell cars
- Installation of SimpleFuel unit to support refueling and identify infrastructure R&D gaps

Funding Opportunities

Nearly \$300M in Funding Announced

- Hydrogen and Fuel Cells \$64M (DE-FOA-0002229)
 - Concept papers due Feb 25; full applications due April 20.
 - 6 Topics include: electrolyzer manufacturing; carbon fiber for compressed gas tanks; fuel cells and membranes for heavy duty applications; new markets for hydrogen (e.g. steel production); demonstrations for emerging applications (e.g. maritime, data centers), and workforce and training development.

• Vehicles - \$133M (DE-FOA-0002197)

- Concept papers due February 21; full applications due April 14.
- 16 Topics include: advanced batteries and electrification in support of the recently-announced DOE Energy Storage Grand Challenge; advanced engine and fuel technologies, including technologies for off-road applications and alternative fueled engines; lightweight materials; new mobility technologies and alternative fuels technology demonstrations.

• Bioenergy - \$96M (DE-FOA-0002203)

- Concept papers due March 5; full applications due April 30
- 7 Topics include: Scale up of Bench Applications to Biomass to Plastics Recycling to Restore Natural Resources to Scalable CO2 Electrolysis.

Up to \$64M announced under H2@Scale New Markets Funding Opportunity (DE-FOA-0002229 posted online)

	Total	Anticipated	Max. Federal	Max. Project	Min Required
Topic Area	Funding	Number of	Funding per	Duration	Non-Federal
	Level	Awards	Award	(years)	Cost Share %
Topic 1: Electrolyzer Manufacturing R&D	\$15M	Up to 4	\$5M	3	20%
Topic 2: Advanced Carbon Fiber for	\$15M	Up to 3	\$9M	5	20%
Compressed Gas Storage Tanks					
Topic 3A: Fuel Cell R&D for Heavy-Duty	\$4M	Up to 4	\$1M	3	20%
Applications -					
Membranes for Heavy-Duty Applications					
Topic 3B: Fuel Cell R&D for Heavy-Duty	\$6M	2 to 3	\$3M	3	20%
Applications -					
Domestically Manufactured Fuel Cells for					
Heavy-Duty Applications					
Topic 4: H2@Scale New Markets R&D-	\$8M	1 to 2	\$8M	3	20%
HySteel					
Topic 5A: H2@Scale New Markets	\$8M	1 to 2	\$8M	3	50%
Demonstrations -Maritime					
Demonstrations					
Topic 5B: H2@Scale New Markets	\$6M	1 to 2	\$6M	3	50%
Demonstrations - Data Center					
Demonstrations					
Topic 6: Training and Workforce	Up to \$2M	1	\$2M	5	0%
Development for Emerging Hydrogen					
Technologies					
Total:	Up to	Up to 21			
	\$64M				

FOA Application Requirements (DE-FOA-0002229 posted online)

- Applicants must submit a **Concept Paper by 5:00pm ET Feb 25, 2020** to be eligible to submit a Full Application
- To apply to this FOA, applicants must register with and submit application materials through EERE Exchange at https://eere-Exchange.energy.gov, EERE's online application portal

Criteria for Assessing Applications						
Criterion 1: Merit, Innovation, and Impact (50%)	 Merit and Innovation Impact of Technology Advancement 					
Criterion 2: Project Research and Market Transformation Plan (30%)	 Research Approach, Workplan and SOPO (Statement of project objectives) Identification of Risks Baseline, Metrics, and Deliverables Market Transformation Plan (NOT applicable to Topic Area 6) Impact Assessment (applicable ONLY to Topic Area 6) 					
Criterion 3: Team and Resources (20%)	 Ability to address all aspects of project with high probability of success Sufficiency of facilities to support the work Ability to facilitate and expedite further development and commercial deployment of deliverables Level of participation by project participants Reasonableness of the budget and spend plan 					

FOA Timeline

	Concept Paper Review		Full Application Review	
FOA Issue Date	Concept Paper Due	Full Application and SIPS Applications Due	Reply to Reviewer Comments Due	Receive Notification of Selection / Non- Selection
January 23, 2020	February 25, 2020	April 20, 2020	May 29, 2020	July 2020

Expected Timeframe for Award Negotiations: July – September 2020

Opportunity for Funding through Nuclear Energy FOA

Nuclear Energy (DE-FOA-0001817)

- Concept papers due Feb 28
- To apply, go to:
- https://www.id.energy.gov/NEWS/FOA/ FOAOpportunities/FOA.htm
- Frequently Asked Questions: <u>www.id.doe.gov</u>

How Hydrogen and Nuclear Synergize

- Heat and electricity from reactors can produce hydrogen to be used as a fuel or industrial commodity, in energy storage, or for other industrial purposes
- Hydrogen can optimize nuclear production when generation exceeds load on the grid
- To learn more about synergies between hydrogen and nuclear, go to https://www.energy.gov/ne/articles/could-hydrogen-help-save-nuclear

Interagency Collaboration to Enable Technology in Emergency Relief

U.S. Department of Energy and U.S. Army Issue Solicitation to Develop H2Rescue

FEBRUARY 3, 2020

Press Release

https://www.energy.gov/eere/fuelcells/articles/us-departmentenergy-and-us-army-issue-solicitation-develop-h2rescue

Opportunity Number and Due Date to Apply to Solicitation W81EWF20FOA0001 - March 31, 2020

- Example of interagency collaboration (DoD and DOE)
- **Up to \$1M** (requires equal match of industry contributions)
- Truck to run on fuel cell/battery and hydrogen and provide power, heat and potable water

DOE-wide STEM Initiative

Student Internship Opportunities

Minority Educational Institution Student Partnership Program Internships (MEISPP)

- 8 10 week summer internships with DOE and national laboratories
- Helps students gain professional and technical career experience while working sideby-side with an assigned mentor
- Includes lodging, round trip airfare, and student stipends

EERE Student Volunteer Internship Program (SVIP)

- Internships throughout the year at its Washington, D.C. Headquarters (HQ) and the Golden Field Office (GFO) located in Golden, Colorado
- Academic credit and/or stipends for federal internships at some colleges and universities
- Does not include lodging, round trip airfare, and student stipends

For eligibility & instructions:

MEISPP

https://www.energy.gov/diversity/servi ces/minority-education-andcommunity-development/minorityeducational-institution-0

SVIP

https://www.energy.gov/eere/education /eere-student-volunteer-internshipprogram-svip

Potential Career Opportunities in Hydrogen and Fuel Cells

Fellow roles in:

- Hydrogen storage (e.g. composite materials, carbon fiber)
- Hydrogen infrastructure R&D (e.g. materials compatibility)
- Hydrogen fuel R&D (e.g. hydrogen production)

Opportunity Title	URL	Opportunity #	Org	Deadline
Development of Advanced Multi-Physics Modeling Techniques for Solid Oxide Fuel Cells-FRP	https://www.zintellect.com/ Opportunity/Details/NETL- 2019-FRP-Hackett-2	NETL-2019-FRP-Hackett-2	NETL	Mar 31 2020 11:59 PM EST
Fuel Cells Technologies Office (FCTO) opportunity in Hydrogen Storage	https://www.zintellect.com/ Opportunity/Details/DOE- EERE-STP-FCT-2020-1801	DOE-EERE-STP-FCT-2020- 1801	FCTO	Open till filled (target: mid 2020)
FCTO Hydrogen Infrastructure Technologies Opportunity	https://www.zintellect.com/ Opportunity/Details/DOE- EERE-STP-FCT-2020-1802	DOE-EERE-STP-FCT-2020- 1802	FCTO	Open till filled (target: mid 2020)
FCTO Opportunity in Fuel Cell Research and Development	https://www.zintellect.com/ Opportunity/Details/EERE- STP-FCT-2019-1800	EERE-STP-FCT-2019-1800	FCTO	Open till filled (target: mid 2020)

Areas:

- Engineering
- Chemistry, Materials
- Project Management
- Safety, codes, standards

For More Info:

DOE Fuel Cell Technologies Office fuelcells@ee.doe.gov

Oak Ridge Institute for Science and Education https://orise.orau.gov/stem/internshipsfellowships-researchopportunities/index.html

Information and Resources

INCREASE YOUR H2tools.org

Save the Date May 19-21, 2020 DOE AMR (Annual Merit Review) Washington DC

Download resources for free at: <u>energy.gov/eere/fuelcells/downloads/increase-your-h2iq-training-resource</u>

www.hydrogen.energy.gov

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells

Thank You

Dr. Sunita Satyapal

Director, DOE Hydrogen and Fuel Cells Program <u>Sunita.Satyapal@ee.doe.gov</u>

Looking for more info? #H2IQ

www.energy.gov/fuelcells www.hydrogen.energy.gov