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Natural Day Night Cycles
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Natural irradiance over solar elevation

Normalized to 550 nm to emphasize spectral shift
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Irradiance from natural and anthropogenic sources
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Nocturnal Species

28% of all vertebrate species (17,242)
o 93% amphibians
o 63% mammals
o 100% bats
e 64% of all invertebrates (793,655)
o 49% insects
m /8% Lepidopterans
m 60% Coleopterans
e ~63% of all species

e Almost all species are influenced by light dark cycles, not just

nocturnal species Hélker et al. 2010



Physical and neural adaptations
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Low light performance
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<0.0001 lux

<0.01 lux

See Gaston et al. 2013 and Desouhant et
al. 2018 for review
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Photoreception

Photoreceptors vary in structure across taxa
from simple intensity detectors to complex
imagers, but all have photopigments that
absorb light at specific wavelength.

wr

SWS-1 SWS-2 MWS LWS

Multiple pigment types allows an
organism to compare intensity
across a broad spectrum.

Non-visual opsins use light as a cue for
biological functions such as circadian rhythms,
reproductive timing and sleep and include
melanopsin, neuropsin, pinopsin, and
vertebrate ancient opsin
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Photoreception

Spectral sensitivity is measured in three ways:
® Dbehavioral responses that provide action
spectra of whole animals

® clectroretinograms that determine the
spectral sensitivity of whole eyes

® microspectrophotometry (MSP) that
measures the absorption spectra of the
photopigments themselves
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Natural vs. city irradiance over solar elevation
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Functional Effects
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Functional effects

Gene expression S 4 -
Physiological development —
Circadian, circannual, circalunar rhythms
Individual survival

Foraging

Mate Finding

Reproductive success

Community composition

Predator prey dynamics

Pollination network

Movement

Population dynamics




Functional Effects
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Fungtional Effects

Gulf Islands National
Seashore, FL

Highly developed along the
gulf coast

80-90% hatchling
disorientation in some years




Functional Effects
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Functional Effects
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Functional Effects
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Functional Effects
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Functional Effects
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Experimental Approach
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In Summary

Natural sources of light at night are exceedingly dim and slightly red shifted

Animal vision varies across ecological realm, and habitat, niche, and even within
species and is manifest in physiology, signal processing, and behavioral
response.

Non-natural sources of light have altered the natural day night cycle spatially,
temporally, spectrally, and in overall intensity

This novel pressure has effected wildlife cross all taxa at every stage in natural
history

Spectra are important, but so is intensity, timing, duration, polarization, and flicker



Future Research

e Connecting spectral radiometry with visual ecology, behavioral ecology, and
landscape ecology in controlled field and laboratory experiments

e Consistent approach to measuring and reporting light

e Thresholds and dose response of intensity, and spectrum

e Spectral tuning, spatial control, nuanced timing

e Ecological services (pollination, pest control, disease vector, agriculture)

e Population level effects
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