Improving Lighting Simulations for Application Efficiency

Sarah Safranek

January, 2020
Simulation Tools for Lighting Design

Lighting recommendations for visual needs:

• Horizontal or vertical illuminance on target surface
Simulation Tools for Lighting Design

Luminaire Spectral Power Distribution

Surface Reflectance Distributions

Ceiling
Walls
Floor
Simulation Tools for Lighting Design

![Diagram of a room with a table and shelves, illustrating surface reflectance distributions.](image)

Surface Reflectance Distributions

- **Dupont Yellow Photopic** $p = 56\%$

![Graph showing % reflectance versus wavelength (nm)](image)
Simulation Tools for Lighting Design

Surface Reflectance Distributions

Luminaire Spectral Power Distributions

Radiant Power (W/nm)

Wavelength (nm)

- 6200 K
- 4700 K
- 3800 K
- 3500 K
- 2700 K

% Reflectance

Wavelength (nm)

- Dupont Pale Blue
- Dupont Yellow

Photopic $\rho = 56\%$
Lighting Recommendations – Beyond Visual Needs

• **Equivalent Melanopic Lux (EML)**
 • WELL Building Standard, from Lucas paper, ipRGCs, m-lx

• **Melanopic Irradiance**
 • CIE, micro-W/cm²

• **Circadian Stimulus (CS)**
 • Lighting Research Center, ipRGCs + rods & cones

Intensity, spectrum, duration, timing, prior exposure, individual differences, etc.
Lighting recommendations – Beyond visual needs

Equivalent Melanopic Lux (EML) & Circadian Stimulus (CS) Recommendations

- WELL Building Standard v1 (May 2016)
 \texttt{\textgreater 250 EML} at 75\% of view positions, 4’ AFF, 4 hours

- WELL Building Standard v1 (Q3 2017)
 \texttt{\textgreater 200 EML} at 75\% of view positions, 4’ AFF, 9 AM – 1 PM

- WELL Building Standard v2 (Q2 2019)
 1 pt: \texttt{\textgreater 150 EML OR \texttt{\textless 0.3 CS}} at 100\% view positions, 4’ AFF, 9 AM – 1 PM
 3 pts: \texttt{\textgreater 240 EML} at 100\% view positions, 4’ AFF, 9 AM – 1 PM

- UL Design Guideline 24480 (2020)
 \texttt{\textgreater 0.3 CS} at 100\% view positions, 43” AFF, 2+ hours between 7 AM – 4 PM
Horizontal Point Illuminance Calculations
3’ AFF

0 lx 300 lx
Vertical View
Illuminance Calculations
4.5’ AFF
Vertical View
EML Calculations
4.5’ AFF

44 EML

247 EML

99 EML
CCT = N/A
Avg. EML = 181

CCT = 3800K
Avg. EML = 98

CCT = 6200K
Avg. EML = 137
Measured Luminaire Information

SPDs of white-tunable LED luminaire

- 3800 K
- 6200 K
- 2700 K

Power draw across range of intensity settings

Luminaire Power

Luminaire Output (% Lumens)
Measured Surface Information

<table>
<thead>
<tr>
<th>Surfaces</th>
<th>Avg. Reflectance</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Paint</td>
<td>0.75</td>
</tr>
<tr>
<td>Flooring - Dark Grey</td>
<td>0.30</td>
</tr>
<tr>
<td>White Ceiling Tile</td>
<td>0.84</td>
</tr>
<tr>
<td>Silver Window Frame</td>
<td>0.71</td>
</tr>
<tr>
<td>Blonde Wood Furniture</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:
- Lighting meets IES visual requirements
 - **300** lx horizontal 30” above floor
 - **150** lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - **100%** of desk locations receive at least **150 EML** OR **CS > 0.3** (1 point)
 - OR **100%** of desk locations receive at least **240 EML** (3 points)

Simulation Input:
- 5000 annual operating hours
- Typical lighting solution
 - **3800 K**
 - (32) 2x2 Recessed LED Luminaires
Baseline Condition

Simulation Goals:
• Lighting meets IES visual requirements
 • 300 lx horizontal 30” above floor
 • 150 lx vertical 18” above work plane
• Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 • 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 • OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:
• 5000 annual operating hours
• Typical lighting solution
 • 3800 K
 • (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:

- Lighting meets IES visual requirements
 - 300 lx horizontal 30” above floor
 - 150 lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 - OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:

- 5000 annual operating hours
- Typical lighting solution
 - 3800 K
 - (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg Eh (lux)</th>
<th>Avg Ev (lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:
• Lighting meets IES visual requirements
 • 300 lx horizontal 30” above floor
 • 150 lx vertical 18” above work plane
• Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 • 100% of desk locations receive at least
 150 EML OR CS > 0.3 (1 point)
 • OR 100% of desk locations receive at least
 240 EML (3 points)

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E_h (lux)</th>
<th>Avg E_v (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
</tr>
</tbody>
</table>

Simulation Input:
• 5000 annual operating hours
• Typical lighting solution
 • 3800 K
 • (32) 2x2 Recessed LED Luminaires
Simulation Goals:

- Lighting meets IES visual requirements
 - 300 lx horizontal 30” above floor
 - 150 lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 - OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:

- 5000 annual operating hours
- Typical lighting solution
 - 3800 K
 - (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E_h (lux)</th>
<th>Avg E_v (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
<th>% Views 150+ EML</th>
<th>% Views 240+ EML</th>
<th>% Views CS > 0.3</th>
<th>Meet WELL Requirement?</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:
- Lighting meets IES visual requirements
 - **300** lx horizontal 30” above floor
 - **150** lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - **100%** of desk locations receive at least **150 EML OR CS > 0.3** (1 point)
 - OR **100%** of desk locations receive at least **240 EML** (3 points)

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E_h (lux)</th>
<th>Avg E_v (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
<th>% Views 150+ EML</th>
<th>% Views 240+ EML</th>
<th>% Views CS > 0.3</th>
<th>Meet WELL Requirement?</th>
<th>Annual Energy Usage (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N</td>
<td>3239</td>
</tr>
</tbody>
</table>

Simulation Input:
- 5000 annual operating hours
- Typical lighting solution
 - **3800** K
 - (32) 2x2 Recessed LED Luminaires
Baseline Condition

Simulation Goals:
- Lighting meets IES visual requirements
 - 300 lx horizontal 30” above floor
 - 150 lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 - OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:
- 5000 annual operating hours
- Typical lighting solution
 - 3800 K
 - (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E_h (lux)</th>
<th>Avg E_v (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
<th>% Views 150+ EML</th>
<th>% Views 240+ EML</th>
<th>% Views CS > 0.3</th>
<th>Meet WELL Requirement?</th>
<th>Annual Energy Usage (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N</td>
<td>3239</td>
</tr>
<tr>
<td>100</td>
<td>3800</td>
<td>780</td>
<td>378</td>
<td>0.2</td>
<td>223</td>
<td>100%</td>
<td>30%</td>
<td>0%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:
- Lighting meets IES visual requirements
 - 300 lx horizontal 30” above floor
 - 150 lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 - OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:
- 5000 annual operating hours
- Typical lighting solution
 - 3800 K → 6200 K
- (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E_h (lux)</th>
<th>Avg E_v (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
<th>% Views 150+ EML</th>
<th>% Views 240+ EML</th>
<th>% Views CS > 0.3</th>
<th>Meet WELL Requirement?</th>
<th>Annual Energy Usage (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N</td>
<td>3239</td>
</tr>
<tr>
<td>100</td>
<td>3800</td>
<td>780</td>
<td>378</td>
<td>0.2</td>
<td>223</td>
<td>100%</td>
<td>30%</td>
<td>0%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
<tr>
<td>100</td>
<td>6200</td>
<td>773</td>
<td>369</td>
<td>0.36</td>
<td>305</td>
<td>100%</td>
<td>98%</td>
<td>100%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:
- Lighting meets IES visual requirements
 - 300 lx horizontal 30” above floor
 - 150 lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 - OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:
- 5000 annual operating hours
- Typical lighting solution
 - 3800 K → 6200 K
- (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E<sub>h</sub> (lux)</th>
<th>Avg E<sub>v</sub> (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
<th>% Views 150+ EML</th>
<th>% Views 240+ EML</th>
<th>% Views CS > 0.3</th>
<th>Meet WELL Requirement?</th>
<th>Annual Energy Usage (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N</td>
<td>3239</td>
</tr>
<tr>
<td>100</td>
<td>3800</td>
<td>780</td>
<td>378</td>
<td>0.2</td>
<td>223</td>
<td>100%</td>
<td>30%</td>
<td>0%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
<tr>
<td>100</td>
<td>6200</td>
<td>773</td>
<td>369</td>
<td>0.36</td>
<td>305</td>
<td>100%</td>
<td>98%</td>
<td>100%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
</tbody>
</table>
Baseline Condition

Simulation Goals:
- Lighting meets IES visual requirements
 - 300 lx horizontal 30” above floor
 - 150 lx vertical 18” above work plane
- Lighting meets WELL v2 Pilot (2019) Circadian Lighting Design Credit
 - 100% of desk locations receive at least 150 EML OR CS > 0.3 (1 point)
 - OR 100% of desk locations receive at least 240 EML (3 points)

Simulation Input:
- 5000 annual operating hours
- Typical lighting solution
 - 3800 K → 6200 K
- (32) 2x2 Recessed LED Luminaires

Simulation Results:

<table>
<thead>
<tr>
<th>System Output (% lumens)</th>
<th>CCT (K)</th>
<th>Avg E\text{h} (lux)</th>
<th>Avg E\text{v} (lux)</th>
<th>Avg CS</th>
<th>Avg EML</th>
<th>% Views 150+ EML</th>
<th>% Views 240+ EML</th>
<th>% Views CS > 0.3</th>
<th>Meet WELL Requirement?</th>
<th>Annual Energy Usage (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3800</td>
<td>389</td>
<td>191</td>
<td>0.12</td>
<td>112</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>N</td>
<td>3239</td>
</tr>
<tr>
<td>100</td>
<td>3800</td>
<td>780</td>
<td>378</td>
<td>0.2</td>
<td>223</td>
<td>100%</td>
<td>30%</td>
<td>0%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
<tr>
<td>100</td>
<td>6200</td>
<td>773</td>
<td>369</td>
<td>0.36</td>
<td>305</td>
<td>100%</td>
<td>98%</td>
<td>100%</td>
<td>Y – 1 point</td>
<td>6478</td>
</tr>
</tbody>
</table>

30% Increase in annual energy usage

Annual Energy Usage w/ 4hr limit (kWh)

| ALTERNATE USAGE SCENARIO | 4185 |
Effects of Surface Reflectance

Blonde Finishes

Warm Finishes

Cool Finishes

Avg = 36%

Avg = 18%

Avg = 66%
Effects of Surface Reflectance

Blonde Finishes

<table>
<thead>
<tr>
<th>CCT [K]</th>
<th>Avg EML</th>
<th>Avg CS</th>
<th>WELL v2 1 point via EML</th>
<th>WELL v2 1 point via CS</th>
<th>WELL v2 3 points via EML</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200</td>
<td>305</td>
<td>0.36</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>3800</td>
<td>223</td>
<td>0.20</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2700</td>
<td>150</td>
<td>0.30</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Warm Finishes

<table>
<thead>
<tr>
<th>CCT [K]</th>
<th>Avg EML</th>
<th>Avg CS</th>
<th>WELL v2 1 point via EML</th>
<th>WELL v2 1 point via CS</th>
<th>WELL v2 3 points via EML</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200</td>
<td>284</td>
<td>0.35</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>3800</td>
<td>202</td>
<td>0.21</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2700</td>
<td>136</td>
<td>0.28</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Cool Finishes

<table>
<thead>
<tr>
<th>CCT [K]</th>
<th>Avg EML</th>
<th>Avg CS</th>
<th>WELL v2 1 point via EML</th>
<th>WELL v2 1 point via CS</th>
<th>WELL v2 3 points via EML</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200</td>
<td>382</td>
<td>0.40</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3800</td>
<td>276</td>
<td>0.26</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>2700</td>
<td>181</td>
<td>0.33</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

@ 100% Lumen Output
Lighting recommendations – Beyond visual needs

Equivalent Melanopic Lux (EML) & Circadian Stimulus (CS) Recommendations

- WELL Building Standard v1 (May 2016)
 \[\text{>250 EML at 75% view positions, 4’ AFF, 4 hours} \]

- WELL Building Standard v1 (Q3 2017)
 \[\text{>200 EML at 75% view positions, 4’ AFF, 9 AM – 1 PM} \]

- WELL Building Standard v2 (Q2 2019)
 1 pt: \[\text{>150 EML OR >0.3 CS at 100% view positions, 4’ AFF, 9 AM – 1 PM} \]
 3 pts: \[\text{>240 EML at 100% view positions, 4’ AFF, 9 AM – 1 PM} \]

- WELL Building Standard v1 (Q4 2019)?
 \[\text{>150 EML at 100% view positions, 4’ AFF, 9 AM – 1 PM (Electric light only)} \]
 \[\text{>200 EML at 75% view positions, 4’ AFF, 9 AM – 1 PM (Electric light and daylight)} \]

- UL Design Guideline 24480 (2020)
 \[\text{>0.3 CS at 100% view positions, 43” AFF, 2+ hours between 7 AM – 4 PM} \]
Effects of Surface Reflectance – Adjusted for WELL v2 2020

(All conditions achieve 150 EML at all view positions)
Key Takeaways

• It’s still the early days!
 • Science, software, and recommendations are still developing

• Know your limits
 • Limitations of simulation tools may have broader impact

• Spectrum matters
 • Many surfaces attenuate short wavelengths

• Optimizing lighting application efficiency requires new tools
 • Improved software tools allow for more data driven decisions