Environmentally Robust Quantum Dot Downconverters for High Efficiency Solid State Lighting

Jonathan S. Owen, Columbia University, Juanita Kurtin, OSRAM Opto Semiconductors Emory Chan, Molecular Foundry, Lawrence Berkeley, National Lab

Jonathan S. Owen, Associate Professor of Chemistry (212) 851-5879, (626) 437-4433 jso2115@columbia.edu

Reaching Theoretical Efficiency Limits of High CRI LED Lighting.

Optimistic Projections: Alex Linkov, Osram OS, 2018.

2020 State Of The Art, 3000K Device Efficacies OSRAM OSCONIQ P 2226

	Efficacy	[Cd]	LER	CCT	CRI	R9
	(Im/W)			(K)		
Phosphor	158	0	298	2983	92	59
QDs	165	90	303	3018	93	56
QDs	203	600	357	2957	90	50

OSCONIQ P 2226 LED Packages

2018: State of the Art 3000K device efficacies.

CRI	Nichia	Lumileds	OSRAM
80	195 lm/W	191 lm/W	191 lm/W
90	163 lm/W	163 lm/W	163 lm/W

25% higher device efficacy from QD enhanced SSL!

Opto Semiconductors

Milestones in the Development of Colloidal QDs

Tuning of architecture controls recombination kinetics, brightness, color, and spectral linewidth.

Owen and Brus, JACS, 2017.

Photoexcitation Intensity of LED Packages: 10-100 W/cm²

Adoption of Light-Emitting Diodes in Common Lighting Applications, 2013, DOE SSL Program.

Flux Stable, Graded Alloy, Spherical Quantum Wells

Spherical Quantum Well Architecture Reduces Strain and Defects

Jeong (Bae) et al. ACS Nano **2016**, *10*, 9297. Matthews and Blakeslee, J. Cryst. Growth **1974**, *27*, 118-125.

Large, Graded Alloys Suppress Auger Recombination

Dubertret, *Nano Lett.* **2015**. Pietryga and Klimov, *ACS Nano* **2013**. Klimov, Htoon *Phys. Rev. Lett.* **2011**. Cragg and Efros, *Nano Lett.* **2010**. Rabani and Baer, *Chem. Phys. Lett.*, **2010**.

QD Performance Testing "On Chip" (DE-EE0007628)

Device Architecture

High Throughput QD Synthesis Robotics

Performance/Reliability Testing "On Chip"

Can narrow band emitting QDs, especially red emitters, maintain PLQY on LED chips during operation?

Flux = 10–100 W/cm² Temperature = 100–150°C PLQY > 90 % Humid air and >10,000 hour operating lifetimes

Silicone/QD Slurry

Environmental Reliability Testing

Single Injection of Mixed Precursors: Precursors Control Alloy Microstructure

High Throughput Screening: "One Pot" Synthesis of CdSe/CdS QDs

Chan, Cohen, Milliron, and Owen, Nano Lett. 2010.

High Throughput Screening: "One Pot" Synthesis of CdSe/CdS QDs

Shelling and Encapsulation Prior to Reliability Testing on Chip

LED Drive Current

ZnS Surface Layer Essential to Reliability but Reduces PLQY

Improved ZnS = Improved Reliability

Objectives in 2019 – 2021 (DE-EE0008716)

High Throughput QD Synthesis Robotics

Performance/Reliability Testing "On Chip"

Slurry for 4000K/90CRI SSL LED

Silicone/QD Slurry

Environmental Reliability Testing

Low Reliability of InP/ZnSe/ZnS QDs on LED Packages

Lower chemical instability thought to arise from the junction of ZnSe/InP.

Growing GaP shell can increase PLQY and stability.

"Cd Free" III-V Nanocrystals Have Poor Absorptivity at λ = 450nm

CdS shell layer provides absorptivity at 450nm (95:5 S:Se shown above).

Shell thickness increases chemical robustness, reduces Auger recombination, and lengthens luminescence lifetime. Poor absorptivity and reabsorption of red and of green is a major drawback.

GaP layers would increase absorption at 450 nm, and better passivate InP layer.

Fundamentally new synthetic methods to grade InP/GaP interfaces are needed.

Reaction Kinetics of Aminophosphine Conversion to InP

Conclusions

(1) Precursor reactivity can be used to control particle size and composition.

- (2) Characterization of microstructure with higher than 5 nm spatial resolution is challenging.
- (3) ZnS surface layers are essential to long-term stability and photoluminescence quantum yield.
- (4) Quantum dots remain promising candidates for deep red emission on LED packages.

Acknowledgements

Postdocs and Graduate students – Columbia University Ellie Bennett Dr. Dan DeRosha Dr. Leslie Hamachi Dr. Abraham Jordan Dr. Ilan Jen-La Plante Brandon McMurtry Dr. Iva Rreza Natalie Saenz

OSRAM Opto Semiconductors

Dr. Peter Chen, Dr. Joseph Treadway, Dr. Bob Fitzmorris, Dr. Ben Mangum, Dr. Juanita Kurtin and Dr. Madis Raukas (Osram Opto Semiconductors)

Molecular Foundry of Lawrence Berkeley National Lab

Dr. Emory Chan, Dr. Ayelet Teitelboim (Molecular Foundry)

