From Deposition to Encapsulation:
Roll-to-roll manufacturing of organic light emitting devices for lighting

Program: DOE EERE SETP CSP subprogram award number DE-E00008723
Lead PI: Stephen R. Forrest1,2,3, Co-PI: Max Shtein1,4, Mike Hack5, Research Team: Boning Qu1, Matthew Kastelic4
1Department of Material Science and Engineering, 2Department of Physics, 3Department of Electrical Engineering and Computer Science, 4Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, 5Universal Display Corporation, Ewing, NJ 08618

Objectives

- Develop R2R process integrating VTE and OVPD growth with film thickness variation <10% on translating substrates
- Fabricate a WOLED with 50 lm/W, CRI >85 by R2R
- Demonstrates 100nm bilayer growth by VTE and OVPD with film thickness variation <10%
- Fabricate 1 cm² WOLED in R2R system with 3000 nits, 15% EQE, and CRI > 80.
- Encapsulate the WOLED with 50 lm/W, CRI >85, L=1000 nits, and T=500 hr, in the R2R tool.
- Develop market forecast and cost models for the volume manufacture of OLED lighting
- Develop roadmap for rapid insertion of R2R manufacturing of WOLED lighting fixtures into the commercial sector

Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Description</th>
<th>Completion Dates</th>
<th>Percent Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.1</td>
<td>Develop R2R process integrating VTE and OVPD growth with film thickness variation <10% on translating substrates</td>
<td>9/30/19</td>
<td>100%</td>
</tr>
<tr>
<td>Task 1.2</td>
<td>Fabricate a WOLED with 50 lm/W, CRI >85 by R2R</td>
<td>3/31/20</td>
<td>50%</td>
</tr>
<tr>
<td>Go/NoGo</td>
<td>Demonstrates 100nm bilayer growth by VTE and OVPD with film thickness variation <10%</td>
<td>3/31/20</td>
<td>100%</td>
</tr>
<tr>
<td>Go/NoGo</td>
<td>Fabricate 1 cm² WOLED in R2R system with 3000 nits, 15% EQE, and CRI > 80.</td>
<td>3/31/20</td>
<td>50%</td>
</tr>
<tr>
<td>Task 1.3</td>
<td>Encapsulate the WOLED with 50 lm/W, CRI >85, L=1000 nits, and T=500 hr, in the R2R tool.</td>
<td>3/31/21</td>
<td>15%</td>
</tr>
<tr>
<td>Task 2</td>
<td>Develop market forecast and cost models for the volume manufacture of OLED lighting</td>
<td>6/30/20</td>
<td>0%</td>
</tr>
<tr>
<td>Task 3</td>
<td>Develop roadmap for rapid insertion of R2R manufacturing of WOLED lighting fixtures into the commercial sector</td>
<td>3/31/21</td>
<td>0%</td>
</tr>
</tbody>
</table>

Technology: OVPD

- In OVPD, the molecular species are thermally evaporated into a stream of inert carrier gas in a hot walled reactor held at low pressure and transported in equilibrium towards a cooled substrate.
- OVPD is particularly suited to low cost volume manufacturing due to its very high deposition rate without sacrificing film quality.
- Growth during translation within the OVPD system shows high film thickness uniformity, smooth surface morphology, and no systematic dependence on the translation speed.

R&D Approaches

- R2R film growth on translating substrates integrates multiple deposition techniques of different processing parameters.
- Interconnected deposition chamber with different pressures; 6-source OVPD: exciton blocking and active emitting layers deposition with accurate doping control; 6-source VTE: metal contacts, charge transport and charge generation layers; in-situ masked patterning; adjustable web translation speed.
- Flexible encapsulation of WOLED without air exposure using 3M Ultra Barrier® or equivalent non-permeable package material.

Preliminary Results

- OLEDs with the emission layers fabricated at different deposition rates from 2 to 50 A/s by OVPD show similar max EQE = 2010 %.
- As the emission layer deposition rate increases, OLEDs show increased efficiency roll-off at high current densities.
- From the PI fitting based on the space charge limited current model and the triplet-polaron quenching rate equation, higher emission layer deposition rate yields higher quenching rate, potentially due to the inhomogeneity in host matrix.