

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Eliminating Plasmon Losses in High Efficiency White Organic Light Emitting Devices for Light Applications

University of Michigan Stephen R. Forrest, Professor / Principal Investigator Tel: (734) 647-1147; stevefor@umich.edu

Contents

I. Motivation

- Where does the Light Go?
- Approach Principles
- II. Sub-Electrode MicroLens Array
 - Design Scheme
 - Optical Design
 - Device Performance & Analysis
- III. Sub-Electrode Diffuse Reflector
 - Design Scheme
 - Optical Design
 - Device Performance & Analysis

IV. Conclusion

OLED Lighting

Where does the Light Go?

- Internal quantum efficiencies (η_{IQE}) ~100%
- But extraction efficiency (η_{out}) is a major limit
- $\eta_{EQE} = \eta_{IQE} \times \eta_{out} \approx 20\%$ (TIR and other losses)
- Refractive index change at interfaces lead to trapped light
 - At glass / air interface, "Glass modes"
 - At high-index ITO / organic layers, "Waveguide modes"
 - Trapped at the metal cathode interface, "Surface plasmons"

Approaches:

Acceptable solutions must have the following properties

- ✓ Low cost
- ✓ Viewing angle and wavelength independence
- ✓ Non-invasive of the OLED structure
- Solutions that outcouple > 70% of the emitted light
- Demonstrate scalability of the methods investigated

Contents

- I. Motivation
 - Where does the Light Go?
 - Approach Principles

II. Sub-Electrode MicroLens Array

- Design Scheme
- Optical Design
- Device Performance & Analysis
- III. Sub-Electrode Diffuse Reflector
 - Design Scheme
 - Optical Design
 - Device Performance & Analysis
- IV. Conclusion

SEMLA on a U of M Logo

Design Scheme

- Micron-scale lens array between the bottom electrode and the glass substrate
- Flat spacer layer
- High refractive index

A Constant of the second secon

Optical Design _ Organic wg → SEMLA

As n_{sub}/n_{org} goes up, more waveguided light is squeezed out

Optical Design _ SEMLA → Glass Substrate

- As n_{SEMLA}/n_{sub} goes up, both transmission and escaping angle decrease
- $n_{\text{SEMLA}}/n_{\text{sub}} = 1.8/1.5 = 1.2$

Optical Design _ High Refractive Index Spacer

Device Performance _ Measurement

Device Performance _ Efficiency

- Control Conventional
 - Peak EQE ~ 25% (Green)
 - Peak EQE ~ 17% (White)
- Enhancement factors (*EF*) with EQEs $EF = \eta / \eta_{glass}$
- Independent on emissive
 wavelengths

- SEMLA with MLA and large Hemisphere lens (HS)
- no blue shift at large angles (at 60 degree)

Device Analysis _ Resolution Impact

- No visible impact on the image resolution
- Patterning of the SEMLA can only be seen under the microscope

Contents

- I. Motivation
 - Where does the Light Go?
 - Approach Principles
- II. Sub-Electrode MicroLens Array
 - Design Scheme
 - Optical Design
 - Device Performance & Analysis

III. Sub-Electrode Diffuse Reflector

- Design Scheme
- Optical Design
- Device Performance & Analysis

IV. Conclusion

Green OLED on Diffuse Reflector Substrate

Metal reflectors are lossy

- Dielectric diffusive reflector
 - ✓ No SPP
 - ✓ Small absorption (Reflectance ~98%)
 - ✓ No angle dependence
 - ✓ Reduced micro-cavity effect

Device Scheme

$$\eta_{out} = \eta_{TA} + \eta_D \eta_S$$

 η_{TA} : Light power fraction to top surface η_D : Light extracted / Light fraction into planarization layer η_S : Light power fraction into planarization layer

$$\eta_D = R_S + (1 - R_S) \cdot R_S + (1 - R_S)^2 \cdot R_S + \dots = \sum_{n=0}^{\infty} (1 - R_S)^n \cdot R_S = 1$$

Optical Design $_{-}\eta_{Dand}\eta_{s}$

- Outcoupled light from planarization layer (η_D)
 - − Thickness, absorption↓ → $η_D$ ↑
 - Major loss channel → Planarization layer absorption

- Coupled light into the planarization layer (η_s)
 - − Increase with $n_P \rightarrow n_P = 1.8$ wg mode vanish

Device Performance _ *Efficiency*

- External Quantum Efficiency (EQE)
 - Mirror 15 ± 2%
 - Diffuser 37 ± 4% (×2.5)
- Identical J-V
 - No influence on device structure

Device Performance _ White Spectrum

- White OLED
 - No spectral shift
 - Weak cavity (high index Planarization layer)
 - Lambertian output pattern
 - Scattering via diffuse reflection

Device Analysis _ Peripheral Emission

- Light emitted outside the defined active area : Peripheral Emission
- Device area ↑ → peripheral emission ↓
- Planar. layer thickness $\downarrow \rightarrow$ peripheral emission \downarrow , EQE \uparrow (68%, ×3.4 @50um)

Conclusion

- Outcoupling methods of following features were demonstrated
 - ✓ Highly efficient
 - ✓ Low-cost
 - ✓ Scalable
 - ✓ Wavelength/viewing angle-independent
 - ✓ No spectrum shift
 - ✓ Non-intrusive into the device structure
- Same enhancement factors for white and monochromatic devices
- No impact on image sharpness (SEMLA)
- No need of external outcoupling, Simple fabrication (Diffuser)

Reference

Y. Qu, J. Kim, C. Coburn and S. R. Forrest, *ACS Photonics* 5, 6, 2453–2458 (2018) J. Kim, Y. Qu, C. Coburn and S. R. Forrest, *ACS Photonics* 5, 8, 3315–3321 (2018)

Acknowledgements

- Optoelectronic Components and Materials Group (UM)
 - Xiaheng Huang
 - Jongchan Kim
 - Yue Qu
 - Caleb Coburn
- Department of Energy
- Universal Display Corp.

Thank You

University of Michigan Stephen R. Forrest, Professor / Principal Investigator Tel: (734) 647-1147 email: stevefor@umich.edu