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Hydrogen Storage Tank — Cost Analysis

Type IV 350-bar 500,000/yr Type IV 700-bar 500,000/yr
Factory Cost' = $2,850 Factory Cost! = $3,480
$15.3/kWh based on 5.6 kg usable H, (5.8 kg stored H,) $18.6/kWh based on 5.6 kg usable H, (5.8 kg stored H,)
Assemby and Assemby and
Inspection, $35 Inspection, $35
Hydrogen, $18 Regulator, $160 Hydrogen, $18 Regulator, $200
Balance of Tank, Balance of Tank,
$102 Valves, $226 $81 Valves, $282
Other BOP, Other BOP,
$107 $131
, Carbon Fiber
Carbon Fiber
Layer. $2.198 Layer, $2,721
! Cost estimate in 2005 USD. Includes processing costs. ! Cost estimate in 2005 USD. Includes processing costs.

Carbon fiber composite layer shares the significant cost (75-80%) of the hydrogen fuel system
Low-cost carbon fiber (LCCF) is needed for Hydrogen or CNG storage tank

#OAK RIDGE Simmons et al. AMR presentation 2013
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Technical Accomplishment — Alternate ~7

Pacific Northwest

Fiber Placement and Multiple Fiber Types e

Single Fiber Designs

Evaluation Criteria T300 T720 T800
Percent Change in Cost +19% +9% +63%
Percent Change in Mass +59% -30% -30%

Combinations of Modulus and Strength Fiber )
Designs Simmons et al.

Fiber stress

Hybrid  Hybrid AMR Presentafion
Maximum ' Evaluation Criteria Modulus Strength Sllde #24, 20 ]3
Stress in Two ' Design Design
Fiber Strengths ' S ' Percent Change in Cost
' f;m:: gl | Percent Change in Mass
Lo rmeemm ke T 0 COVin fiber
B Low and High Angled Helical Combinations prop.erhes pICIyS
_ _ . . significant role in
Fiber Properties Evaluation Criteria Mild Aggressive '|'h|$ COS'l' (]ﬂ(]lySiS,

Tailoring Tailoring

Material Property E-Glass T300 HAH Percent Change in
Tensile Strength [ksi] 350 512 Cost
Tensile Modulus [Msi] 12.0 33.4 33.4 38.7 42.7 HAH Percent Change in D LCCF mUST hgve
Fiber Count [x1000] 2 12 24 24 24 Mass consistent

Yield [ft/Ib] JEENELSI 1862 903 1367 1446 LAH Percent Change in oroperties.
I (CYNEIN 0093  0.064 0065  0.065  0.065 Cost :

LAH Percent Change in
Mass

HEXAGON | Gainsin cost and mass savings up to 16%

o through controlled fiber placement 24




Outline

 Update on research status and future affordabillity perspective
on the US manufactured carbon fibers

e Interfacial engineering of carbon fiber composites
e Devising composite tanks with health monitoring tools

 Thermoplastic liners and studies to reduce permeability
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Globally studied precursor candidates

Specialty acrylic fibers (SAF)
— High molecular weight polyacrylonitrile (PAN)

» Textile and PAN Variants (FISIPE, Sterling, Blue Star, Kaltex, Taekwang, Thai Acrylic, Montefibre)

— Renewable acrylonitrile
— Variant PAN compositions (comonomer variation)

* Melt-processible PAN precursors

A

Isotropic _

e Polyolefin (polyethylene) \
« Pitch precursors L
— Mesophase synthesis J -
« Natural gas (for CNT yarn) _ Défect
P density
e Cellulosic precursor n - -
”

* Lignin (MeadWestvaco/GrafTech) |~
« Spider silk

;&,E}t K RIDGE
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Carbon Fiber R&D at ORNL (Bench-scale to CFTF scale)

Laboratory CFTF Projects
R&D
Projects Establish and perform collaborative R&D

projects to reduce technical uncertainties

Investigate CF intfermediate forms and technical
challenges in composite applications

Industry
Investigate potential alternative CF Adopftion
precursors

Establish artificial intelligence-based framework and
correlate process data to product characteristics

Investigate and develop in-process measurement,
sensing and control methods

MRL 1-2 MRL 3-7

#,0AK RIDGE
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Conversion of Alternative Textile Precursor

ORNL successfully produced and licensed the technology +CH2 HHCHZ CHL*
for conversion of unmodified, alternative textile-derived

carbon fiber based on solution-spun PAN copolymer

precursor fiber. CHS l

1.4

SAF

135 [ Textile
Lack of accelerants
allows slow oxidation
kinetics, which favors high
throughput conversion.

Density (g/cc)

T S Types of Fibers Produced:
0 50 100 150 200
Time (min) ~500 ksi, 33 Msi
~450 ksi, 39 Msi
~400 ksi, 36 Msi

%O0AK RIDGE ~625 ksi, 50 Msi (from SAF and controlled carbonization)
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Precursor treatment and finish can affect properties

« Chemical impact on oxidation time and state may not be significant.
» The applied spin finish can generate defects (on precursor fiber surfaces).

mW“

Precursor Finish Type 2

150

100+

1 Precursor Finish

Type 1
Precursor Precursor Precursor
Finish Finish Finish
Type 1 Type 2 Type 1
Carbon Fiber A
Property Precursor Finish Type 1 Precursor Finish Type 2
Tensile Strength (ksi) 457 369
Tensile Modulus (msi) 39 36
Elongation (%) 1.18 1.06
#,04K RIDGE CF Density (g/cc) 1.7651 1.7573
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Lab-scale PAN Spinning: Variation in Properties
T—-—_—"

Coagulating jet

Average properties:

13.48 £ 0.79 um diameter
84.2 * 6.4 ksi strength
15.5 + 1.1 % elongation

Stress (MPa)
o
8

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%0 : 550 ksi strength, 35 Msi modulus -

-




10

300 ksi (2.0 GPa)
tensile strength and
30 Msi (200 GPa)
tensile modulus in
carbonized filaments
were observed.

« Fully functionalized PE fibers are brittle in nature. Handling of tow was improved in the modified
sulfonation reactor.

* The issue of inter-flament bonding during thermal treatment was identified as one of two major
obstacles. After undertaking numerous studies, optimized fiber treatments were identified and
inter-filament bonding even with small diameter fibers has been eliminated.

E)f_uf; RIDGE
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Ongoing LCCF R&D Projects Sponsored by FCTO

* Novel Plasticized Melt Spinning Process of PAN Fibers Based
on Task-Specific lonic Liquids (ORNL; Pl: Sheng Dai)
— Ic_)nlig liquids enable melt-processing of PAN and higher carbon
yle

* Developing A New Polyolefin Precursor for Low-Cost, High-
Strength Carbon Fiber (Penn State; Pl. Mike Chung)

— High-yield polymeric char forming fibers as carbon precursors

 Precursor Processing Development for Low- Cos’r H| h—
Strength Carbon Fiber for Composite Overwropped Pressure
Vessel Applications (Univ. Kentucky; Pl: Matthew C.
Weisenberger)

— Designed carbon fiber morphology for enhanced composite
performance

gDﬂuc RIDGE
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New hybrid melt-processable precursor offer excellent
opportunity for extensive study
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New high-yield carbon precursors have the potential to change the manufacturing
methodology. (Penn State University: Prof Chung)

Rice University is working on natural gas derived CNT fiber with 4 GPa ftensile strength.

gDﬂ K RIDGE
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Precursors and associated conversion option

( Natural )
gas-based | i Carbon fiber
(__CNT Soluti for
4 R D composite
PAN Gl Spinning - applications
Textile, 3
HMW, SAF o Structural
> < § fibers
PAN l “C- :
Melt-spun o) Semi-
be 3 (2 Structural
Pitch — @ fibers
\ , Melt =
s X S o
Poly- Spinning O Non-
olefin — Structural
\ J fibers
Lignin | —
o J

ORNL has established precursor fiber manufacturing and conversion capability for all probable precursors.

04K RIDGE However, the conversion of these variant carbon precursors (fibers) requires different approaches
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Carbon Fiber Manufacturing —Surface Treatment
Surface Engineering is Critical 1o Composﬁre Properties

29
€ ul
£
g nV
g w7
5 1 .l‘_.,.. o
f: 14 r
:‘E s/ 1 tpy dry surface treatment module
sV
P * Current CF post-treatment not

Coaveatlonal Surface Thermo Chemical Amospheric Plasma tailored for commod |1'y resins

freatment Sur hgnf;{()ment 1ORNL)
« SBS strength increased by 40+%
with proper fiber surface
engineering
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Better understanding of the hierarchical interactions
between a polymer matrix and large-diameter fiber
reinforcements is needed

Enables designing interphases in composites via targeted interfacial chemistry, scattering tools, and
large-scale simulations to unravel correlations between structural properties, rheology, interfacial
stability, and dynamics.

Relative tensile 120

strength of TP matrix & 100

composites with the 2 .

use of untreated CF v

vs. freated CF. g0
(72}

2 3 4 5
Strain (%)
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« Infegrated SiC nanoparticles onto carbon fiber surface through a continuous feed-
through dip coating process of fiber tows

Nanoparticles in Fiber Sizing: Self Sensing ..

- Utilized commercially-available epoxy sizing and SiC nanoparticles

- Mechanically mixed nanoparticles in the epoxy sizing solution (at different epoxy
and nanoparticles concentrations)

- Combined fiber tows in an epoxy matrix to generate a unidirectional composite

« Goal: Use the piezoresistive behavior of SiC to enhance the structural health monitoring '
capabilities of the composite while maintaining mechanical performance

Unidirectional

Composite Fabrication o5 tows of carbon fibet

Multifunctional

\ Composite J

S

FOACRIDAE Bowland et al ACS Applied Materials and Interfaces (2018)
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Next Generation Self-Sensing Multifunctional Composites
via Embedded Nanomaterials

. . . . . Out-of-plane through thickness variation of

dynamic mechanical forces

Applied Force

100 88.66 88.25 Silver electrodes

]
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Pinning effect causes
10-15 % improvement in
interlaminar shear
strength in the
composites
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COPV liners based on blow-molded plastics

0.002 0.0025 0.003 0.0035 0.004 0.0045

16
Barrier properties can be enhanced
without affecting its processability. -17 -
_]8 -
A malleable not-completely-
crosslinked nitrile rubber gel filled with 17 £
addifives exhibits reduced 0 -
permeability data compared to its - ¥
unfilled control. e :
c
Materials for liner: 22 - §
HDPE 03 ¢ 1% GO NBR XxXX
B ] 4
POM NBR neat ‘t%
24 -
A 1% GO 2pph DCP x
_25 -
X2pph dcp
-26
#:Dﬂli RIDGE 1/T(1/K)
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A Tough, Self-Healing Elastomer
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Tailorable mechanical
properties of the
renewable materials
(>50% lignin content)

Exhibits instant healing in
elastomers or thermal
bondability in high lignin
content plastic material.

Cui et al. ACS Macro
Letters 7, 1328-1332
(2018)

Significance and Impact

Renewable materials are being examined as chemicals,
materials, and fuels. Here, we developed a simple
method to obtain a beneficial chemical, structurally like
3,4-dihydroxyphenylacetic acid (DOPAc), from the
natural phenolic polymers from industrial waste-
stream. The multifunctional polyphenol oligomers
exhibit the potential to serve as an alternative for the
traditional chemicals in many applications.

Research Details

A new, stretchy, plant-derived material that
outperforms the adhesiveness of the natural chemical
that gives mussels the ability to stick to rocks and ships.
This bio-based material —composed of functional
polyphenol and epoxy—can self-heal and elongate up
to 2,000%. To achieve these results, researchers
developed a unigue method to extract a specific form
of lignin. The resulting molecular structure creates a
super-sticky, highly elastic material that can heal
qguickly, where broken, through hydrogen bonding.



Outline

 Update on research status and future affordabllity perspective
on the US manufactured carbon fibers

e Interfacial engineering of carbon fiber composites
e Devising composite tanks with health monitoring tools

 Thermoplastic liners and studies to reduce permeability
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