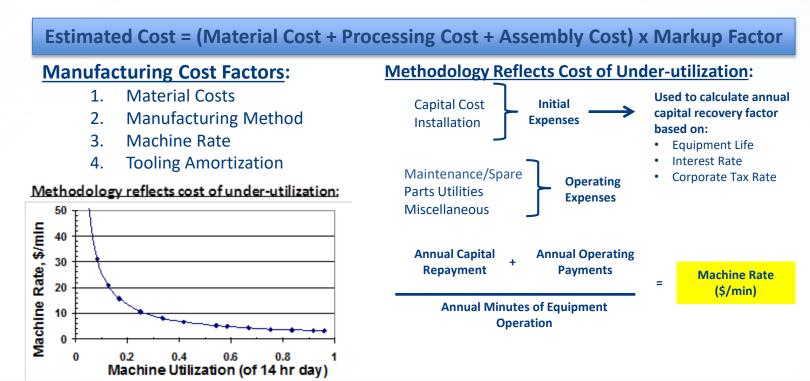
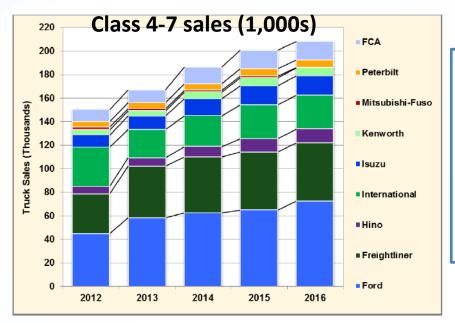


Cost analysis of compressed gas storage for medium and heavy duty vehicle applications

Cassidy Houchins and Brian James

Compressed Gas Storage for Medium and Heavy Duty Transportation Workshop, 21 January 2020

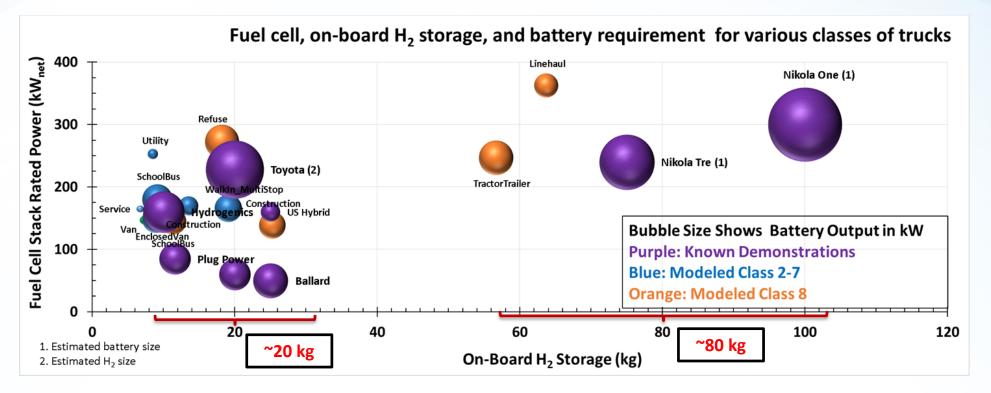

Overview of Our Approach to Cost Analysis


Approach: DFMA[®] methodology used to track annual cost impact of technology advances

What is DFMA[®]?

- DFMA[®] = Design for Manufacture & Assembly = Process-based cost estimation methodology
 - Registered trademark of Boothroyd-Dewhurst, Inc.
 - Used by hundreds of companies world-wide
 - Basis of Ford Motor Company (Ford) design/costing method for the past 20+ years
- SA practices are a blend of:
 - "Textbook" DFMA[®], industry standards and practices, DFMA[®] software, innovation, and practicality

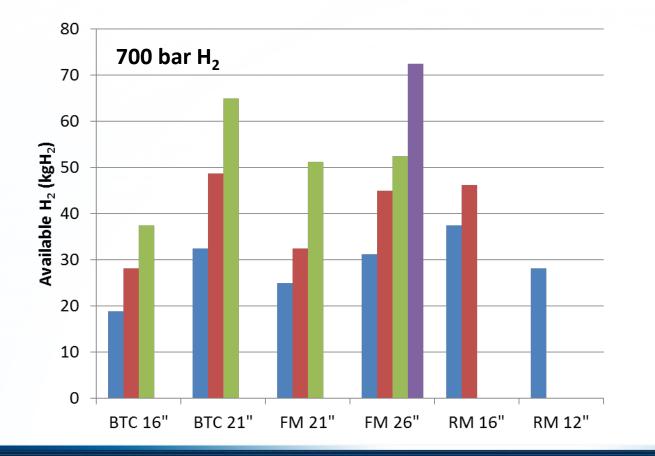
U.S. Market Size of Medium and Heavy-Duty Vehicles

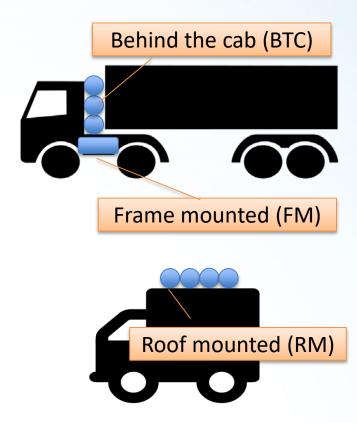

Combined US MDV/HDV manufacture ~400k

Compared to:

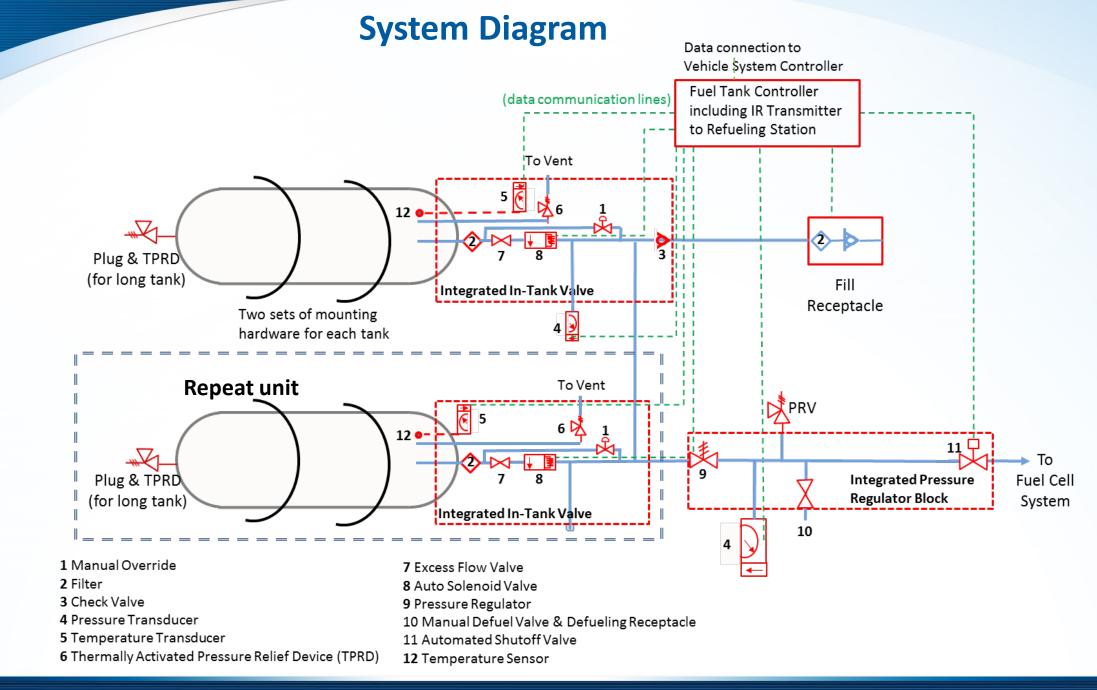
- ~12M Light-Duty Vehicle made in US in 2015
 - (~90M LDV produced worldwide)
- ~4k Transit buses made in US in 2015
 - (~75k Transit Buses produced worldwide)

- Only ~3% of MDV/HDV are imported into US
- Class 4-7 truck sales up 38% since 2012
 - ~200k truck sales in 2016
- Class 8 truck sales stagnant/declining
 - Reflects shift away from long-haul toward regional-haul
 - Will driver-less trucks reverse this trend?
- ~400k combined truck sales in 2016


Projected On-board H₂ Storage Requirements



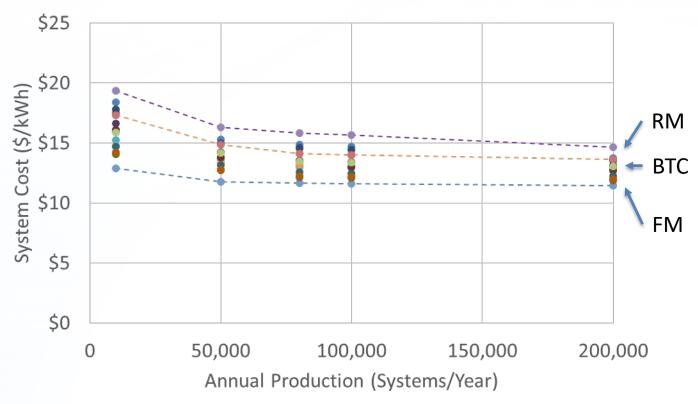
- ANL* conducted drive cycle analyses of several MDV and HDV vocations to determine optimal fuel cell, battery, & on-board H₂ requirements for a <u>fuel cell dominant architecture</u>
- 20 kg and 80 kg are representative H₂ storage systems for MDV and HDV, respectively
- However, the range is large:
 - 10-30 kg H₂ (MDV)
 - 60-100 kg H₂ (HDV)


Packaging Options

- H₂ storage capacity estimated from envelope¹
- Based on commercially available CNG packages²
- Available H₂ stored mass shows several available configurations, including multiple tanks and different tank sizes.

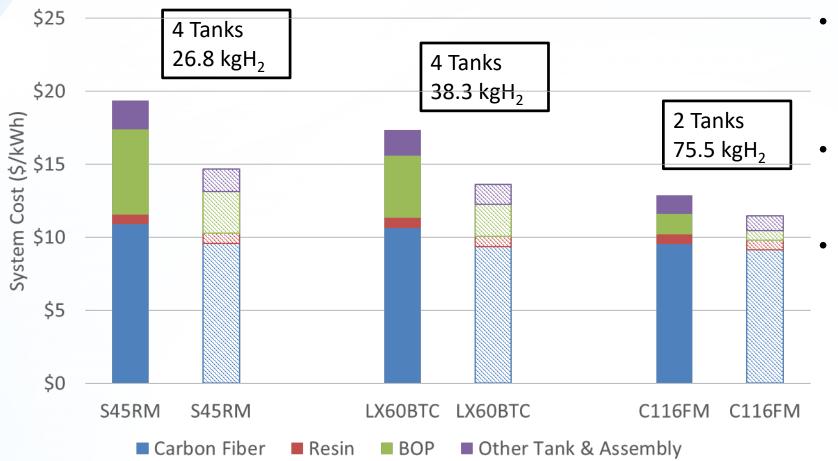
 Gangloff, Kast, Morrison, and Marcinkoski <u>https://doi.org/10.1115/1.4036508</u>.
 http://www.a1autoelectric.com/

Carbon Fiber Estimates


									ANL: ρ= 1.58 [g/cm3] σu=2550 [Mpa] (VcF=60%)				PNNL: ρ= 1.57 [g/cm3] σu=2762.5 [Mpa] (VcF=65%)			
	Internal Volume	Length (inches)	Diameter (inches)	Туре	Li/Di	Storage Pressure	Liner Type	Usable H2	Liner THK,	comp THK,	liner Weight	comp Weight	Liner THK,	Comp THK,	liner Weight	Comp Weight,
Debind the Ceb	(DGE)	. ,				(bar)		(kg)	mm	mm	kg	kg	mm	mm	kg	kg
Behind the Cab	20		40	4	F	700		0.7		05.4	40.4	405.0		20.7	40.4	450
cH2	30	80	16	4	5	700	HDPE	9.7	5	35.4	13.1	165.6	5	32.7	13.1	152
Behind the Cab																
cH2	52	80	21	4	3.8	700	HDPE	16.3	5	47.3	17.5	280.5	5	43.7	17.5	257.5
Frame Mounted																
cH2	40	60	21	4	2.9	700	HDPE	11.9	5	47.3	13.4	207.9	5	43.7	13.4	190.9
cH2	52	80	21	4	3.8	700	HDPE	16.3	5	47.3	17.5	280.5	5	43.7	17.5	257.5
cH2	82	120	21	4	5.7	700	HDPE	25.3	5	47.3	25.9	425.6	5	43.7	25.9	390.8
Frame Mounted																
cH2	50	60	26	4	2.3	700	HDPE	17.5	6.2	58.4	20.2	313.9	6.2	54	20.2	288.2
cH2	72	80	26	4	3.1	700	HDPE	24.4	6.2	58.4	26.4	421.2	6.2	54	26.4	386.7
cH2	84	90	26	4	3.5	700	HDPE	27.8	6.2	58.4	29.6	474.9	6.2	54	29.6	436
cH2	116	120	26	4	4.6	700	HDPE	38.1	6.2	58.4	39	635.8	6.2	54	39	583.8
Roof Mounted																
cH2	60	80	16	4	5	700	HDPE	9.7	5	35.4	13.1	165.6	5	32.7	13.1	152
cH2	74	96	16	4	6	700	HDPE	11.7	5	35.4	15.7	199.1	5	32.7	15.7	182.8
cH2	45	97	12	4	8.1	700	HDPE	6.7	4	28.2	9.6	118.2	4	26.1	9.6	108.5

- Close collaboration with Argonne National Lab (Rajesh Ahluwalia and Hee-Seok Roh)
- ANL estimated composite masses for several tank sizes and aspect ratios (L/D)
- Tank dimensions are based on A1 Alternative Fuel Systems product sheets*

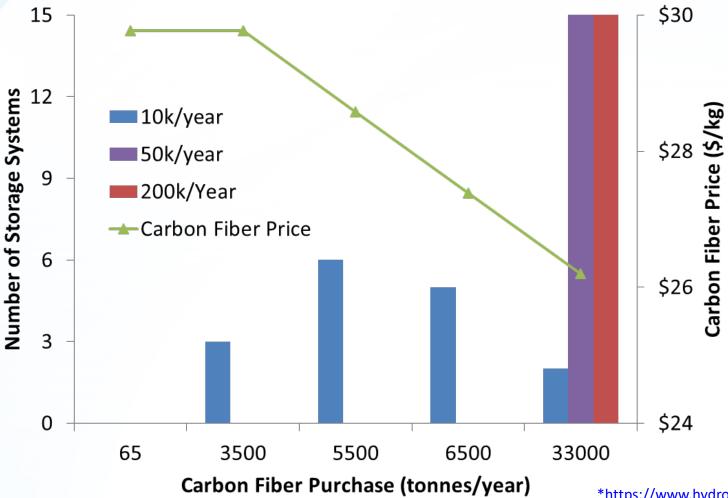
*http://www.a1autoelectric.com/alternative-home/fuel-systems-integration/


Survey of System Cost

Projected 700 bar Type 4 Storage System Costs for Medium and Heavy Duty Hydrogen Vehicle Storage

- System costs are normalized to total energy content (33.33 kWh/kgH₂)
- Range System cost is a function of
 - Storage system volume (total kgH2)
 - Number of tanks (valves)
 - Production rate dependence strongly depends on system size driven by annual carbon fiber purchasing power.

System Cost Breakdown Comparisons

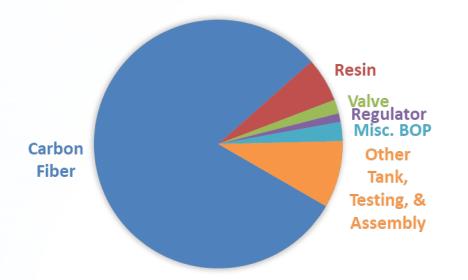


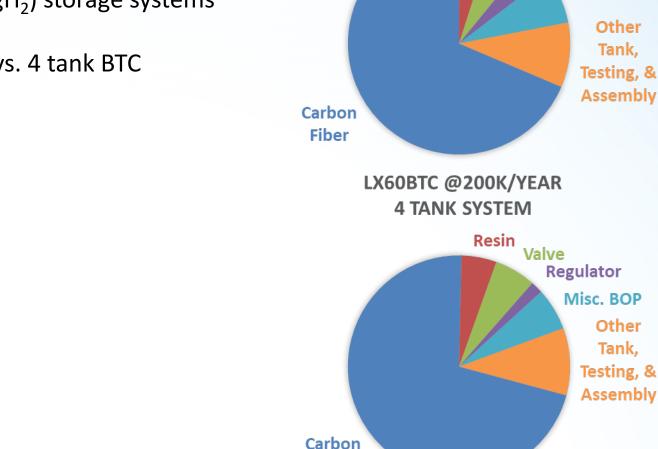
System Cost Breakdown for Select Configurations

- Breakdowns for three configurations: roof-mounted, behind-the-cab, and frame-mounted.
- Carbon fiber mass is (mostly) invariant with tank dimensions
- BOP cost (per kWh) is relatively
 smaller for larger storage volumes

10k systems/year (solid fill) 200k systems/year (patterned fill)

Significant Carbon Fiber Purchasing Power is Possible at 'Low' Numbers of Storage System Production Rates


- Carbon fiber is based on T700S price curves reported in the 2019 DOE Record*
- Histogram shows number of systems from slide 8 that fall within the annual carbon fiber purchase volume bin (e.g. 3 storage systems fall within the 3500 tonnes/year bin when produced at 10k systems per year)
- Because the storage systems are relatively large and there are multiple tanks, the annual carbon fiber purchase quantity approaches the annual output of a single large carbon fiber processing line at around 50k systems per year
- For perspective, 50k is around 10% of the combined annual sales of medium and heavy-duty vehicle shown in slide 4


*https://www.hydrogen.energy.gov/pdfs/19008_onboard_storage_cost_performance_status.pdf.

Some More Cost Breakdowns...

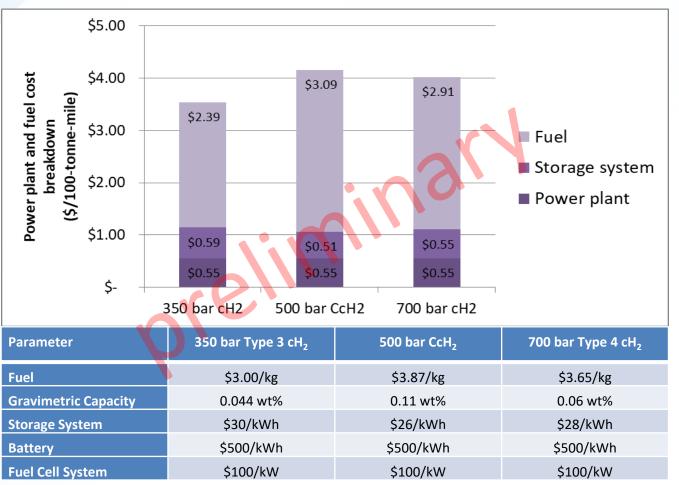
- Note relative fraction of total cost from Carbon Fiber for the frame-mounted (75.5 kgH₂) vs. behind-the-cab (20 kgH₂ and 40 kgH₂) storage systems
- Also note valve cost fraction (vs. regulator) for 2 vs. 4 tank BTC

C116FM @200K/YEAR 2 TANK SYSTEM

Fiber

Miscellaneous BOP is dominated by a 10% (per tank) contingency on BOP

LX30BTC @200K/YEAR 2 TANK SYSTEM


Resin

Valve

Regulator

Misc. BOP

Targets Need to Account for Operating Costs

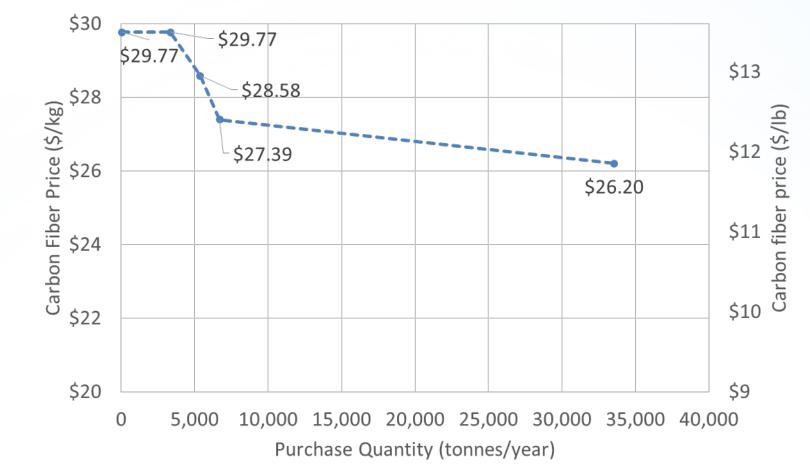
- Rough analysis of system operating costs for an 80 ton long haul truck comparing three onboard fueling options: 350 bar Type 3, 700 bar Type 4, and 500 bar cryo-compressed
- Goal is to estimate the operating costs on a tonne-mile basis by evaluating the lost freight capacity due the mass of the storage and power plant.
- The storage system, fuel cell system and battery estimates are based on the very conservative ranges from our analysis.
- Fuel costs are estimated from ANL*. Dispensing costs are from ANL analysis are for light-duty vehicle refueling

*https://www.hydrogen.energy.gov/pdfs/review19/sa170_elgowainy_2019_o.pdf

Conclusions

- For vehicles with very large fuel storage requirements, carbon fiber is the only effective cost reduction parameter.
- For vehicles with smaller on-board storage and multiple tanks, the repeated in-tank valve adds significant cost.
- Targets need to address operating expense of vehicle (reduce \$/ton-mile).
 - Higher storage densities (e.g. cryo-compressed) may be an attractive option for improving the \$/tonmile opex <u>if</u> the refueling costs can be improved.
 - Improved fuel economy can reduce the total storage system size

Thanks!


Cassidy Houchins chouchins@sainc.com

Storage System Parameters

Parameter	LDV	MDV	HDV
H ₂ mass	5.6 kg	20 kg	80 kg
Pressure	700 bar	700 bar	700 bar
Number of tanks (options listed)	1-2	2-4 (roof mounted) 4-6 (behind the cab)	2 (frame mounted)
Liner	HDPE	HDPE	HDPE
Liner thickness	0.5 cm	0.5 cm	0.5 cm
Inlet diameter	35 mm	35 mm	35 mm
Composite mass (ANL investigating geometry effects)	91 kg	~350 kg	~1100 kg
Carbon fiber	PAN-MA based CF	PAN-MA based CF	PAN-MA based CF
Resin	Vinyl ester	Vinyl ester	Vinyl ester
Fiber volume fraction	0.65	0.65	0.65
Valve	Integrated in-tank	Integrated in-tank	Integrated in-tank
Stack size (net power)	80 kW	160 kW	300 kW
Peak flow (60% stack efficiency)	1.1 g/s	2.2 g/s	4.1 g/s
Regulator	Integrated	Integrated	Integrated
High pressure gas lines	¼"-16 gauge 316L	¼"-16 gauge 316L	¼"-16 gauge 316L
Low pressure gas lines	¼"-22 gauge 316L	¼"-22 gauge 316L	¼"-22 gauge 316L
Tank aspect ratio (internal)	1.7-3	3.8-5	5
Mounting hardware		Specific to tank placement	

Carbon Fiber Price Schedule (Based on T700S)

2019 Carbon Fiber Price

