Electrolyzer Integration with the Grid

Jennifer Kurtz, Rishabh Jain, Kazunori Nagasawa, Santosh Veda, Sam Sprik, Rob Hovsapian

2019 Fuel Cell Seminar, H2@Scale Session
November 5, 2019
Long Beach, CA
Problem – A mismatch between generation and demand intensifies with more renewable generation and increased demand.

Solution – Dynamically controlled electrolyzers can minimize the discrepancies while also producing valuable hydrogen.
Verifying Electrolyzer Value

Modeling
- Grid with traditional and renewable generation
- Electrolyzers
- Hydrogen fueling

Experiments
- Dynamic control
- Validate performance
- Evaluate use case scenarios

Analysis
- System characterization
- Optimization for cost, hydrogen production, services
- Iterations
Power Hardware-in-the-Loop Electrolysis and Energy Storage

Grid Services
Dispatchable loads (electrolyzers and stations) for grid services

Renewables
Transient operations with AC and DC power operation and analysis

Control
Includes power conversion, system integration, remote, real-time response, simulation, demand response, and safety

Cell/Stack
Multiple stack test beds capable of variable sizes and operation conditions, including BOP

Molecules
Gas fermentation with hydrogen

Images: NREL
Electrolyzers avoid curtailed renewable generation with hydrogen production

Electrolyzers are operated at nearly steady state until PV generation, then the electrolyzer network operates during PV transients to dampen impacts of variable generation on a distribution feeder, utilize what would have been curtailed PV generation, and produce high-value hydrogen.
Thank you

www.nrel.gov