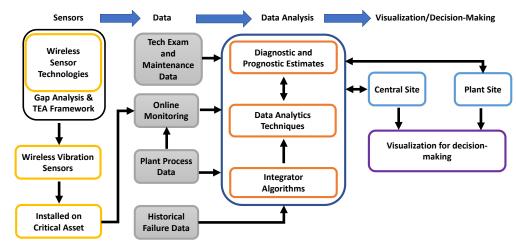


Analytics-at-Scale of Sensor Data for Digital Monitoring in Nuclear Plants

Advanced Sensors and Instrumentation Annual Webinar

November 6, 2019


Vivek Agarwal Idaho National Laboratory

Project Overview—Goals and Objectives

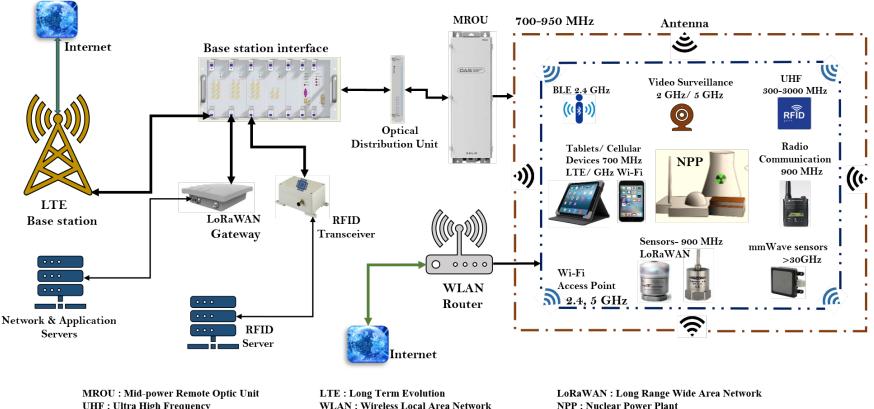
Goal

 Advance online monitoring and predictive maintenance in nuclear power plants to enhance plant performance (i.e., efficiency gain and economic competitiveness)

- Develop a general methodology for techno-economic analysis (TEA) of wireless infrastructure installed at a plant site and used for equipment monitoring
- Develop diagnostic and prognostic models for an identified balance of plant asset using machine learning techniques
- Develop visualization algorithms to support informed decisionmaking
- Validate developed models and TEA methodologies

Project Overview—Team

- Vivek Agarwal, PhD
- Koushik A. Manjunatha
- Ahmad Al Rashdan, PhD
- Ronald L. Boring, PhD
- Pradeep Ramuhalli, PhD
- Michael Taylor
- Scot A. Greenlee
- **Richard Weisband**



Project Overview—Schedule

- Period of Performance: 10/1/2018 to 9/30/2021
 - Year 1 (10/1/2018 9/30/2019)
 - Review of TEA methodologies of wireless infrastructure (INL)
 - Identification of balance of plant asset (INL)
 - General framework for TEA of wireless infrastructure (INL)
 - Year 2 (10/1/2019 9/30/2020)
 - Wireless sensor modality at a plant site to collect new set of data (INL)
 - Development of integration algorithms and diagnostic models (INL)
 - Development of prognostic models (ORNL)
 - Year 3 (10/1/2020 9/30/2021)
 - Visualization tools and development of visualization guidance (INL)
 - Validation and verification of developed models (Team)
 - Development of end state vision on predictive maintenance strategy (Team)

Accomplishments – Envisioned Wireless Infrastructure at a Nuclear Power Plant

UHF : Ultra High Frequency mmWave: millimeter Wave

WLAN : Wireless Local Area Network **BLE : Bluetooth Low Energy**

NPP : Nuclear Power Plant **RFID** : Radio Frequency Identification

- Enable collection, transmission, storage, and usage of plant asset data across different frequency spectrum
- Online equipment monitoring •
- Enhance plant performance and situation awareness

Accomplishments – Network Elements

• The whole network topology is predominantly driven by Distribute Antenna System (DAS) or Wireless Local Area Network (WLAN) system

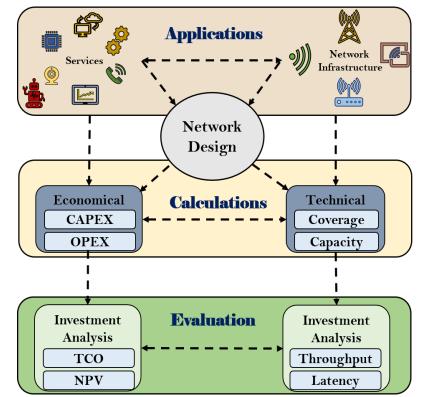
Distributed Antenna System, DAS

- Use of several antennas as opposed to one antenna
- Provides wireless coverage to specific area with reduced total power
- Combination of wireless amplifiers, fiber optic cables and co-axial cables to distribute wireless signals to antennas
- Supports wide range of frequency applications (KHz to GHz)
- Supports both indoor and outdoor deployment
- Wireless Local Area Network (WLAN/WiFi)
 - Low coverage and limited capacity access points (APs)
 - Works in unlicensed spectrums 2.4GHz and 5GHz
 - Supports bandwidth up-to 160MHz (WiFi-6)
 - Distributes the network capacity by distributing wireless APs

Accomplishments – Network Elements

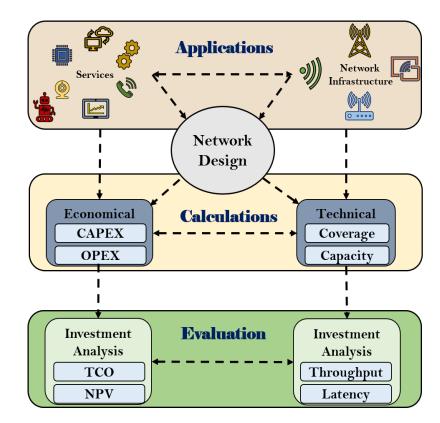
- Long Range Wide Area Network (LoRaWAN)
 - Low power wide area networking protocol
 - Wirelessly connects battery operated low bit rate devices to network
 - Works in unlicensed Industrial, Scientific, and Medical (ISM) Band
 - LoRaWAN signal ranges up-to 10km
- Bluetooth
 - Bluetooth operates in the 2.4 GHz unlicensed band
 - Transmits at low power (0 dBm or lower) with a high data rate (up to 2 Mbps)
 - Wirelessly connects battery-operated short-range (up-to 10m) devices to network
 - BLE can connect to the internet through LTE-Cellular or WiFi
- Radio Frequency Identification, RFID
 - An automatic identification and data acquisition technology
 - Operates in low frequency(Hz) to ultra-wide band (GHz) frequency
 - Signal coverage between 1m to 100m
 - RFID is used in monitoring, tracking and supervising industrial assets

Accomplishments – Network Features


- Applications from
 - low power to high power,
 - low frequency range to high frequency range,
 - short range to long range communication
- LTE-DAS or WiFi can act as a bridge between end-device/other wireless technologies(Bluetooth, LoRaWAN etc.) and the internet or outside network
- Easy network maintenance by bringing all the networking technologies under one network architecture
- High bandwidth and data transmission rate with low latency
- Prioritized data transmission based on required Quality of Service
- Customized security and networking protocols development

Accomplishments – TECHNO-ECONOMIC FRAMEWORK

- Techno-economic analysis framework is used to examine
 - feasibility of proposed network technology
 - cost effective way of traffic offloading and uploading
- Network modelling
 - The number of APs/DAs estimated using
 - Required network capacity
 - Coverage area

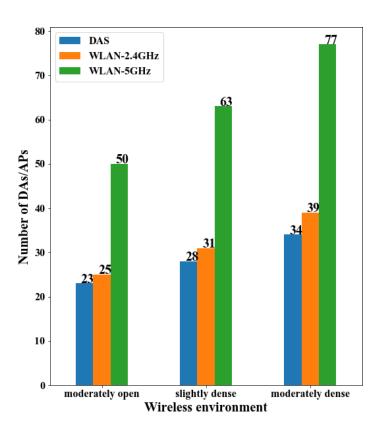

 $\max\{\#(AP/DA)_{Area}, \#(AP/DA)_{Capacity}\}$

- Cost estimations
 - Capital expenditure (CAPEX) on installation and deployment
 - Operation expenditure (OPEX) on network maintenance

Accomplishments – TECHNO-ECONOMIC FRAMEWORK

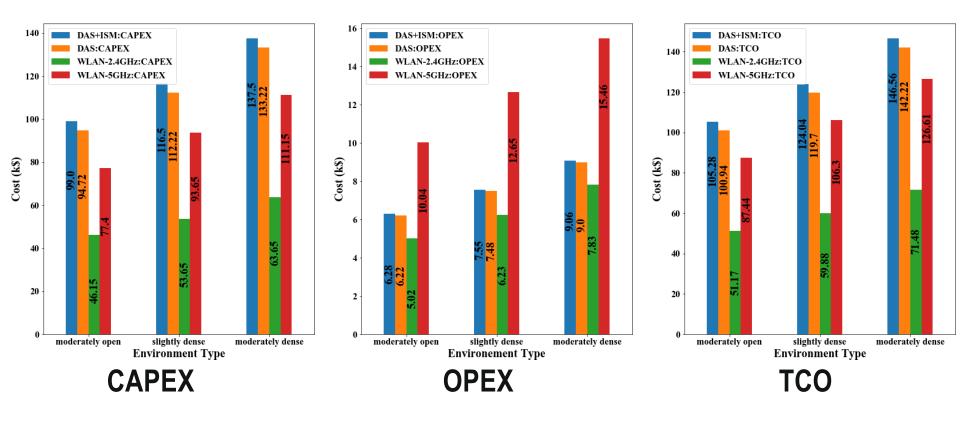
- Investment analysis
 - Total Cost of Ownership, TCO
 - Net Present Value, NPV
- Total Cost of Ownership, TCO
 - Defines total network deployment expenditure
 TCO = CAPEX + OPEX
- Net Present Value, NPV
 - NPV = Profit CAPEX
 - Estimate of cost of an investment in present value terms
 - Indication of profitable deployment
- Performance evaluation
 - Network throughput
 - Average packet delay

Accomplishments – TECHNO-ECONOMIC EVALUATION

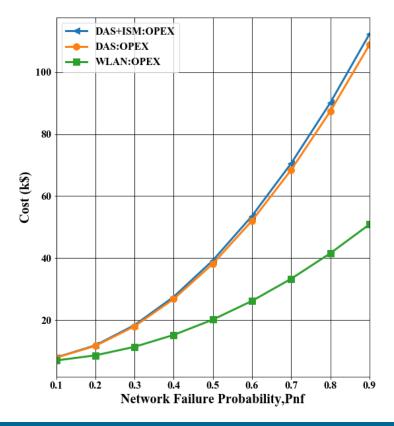

- DAS deployment
 - LTE cellular with base station (BS)
 - LoRaWAN with LoRa-gateway
 - RFID with RFID-gateway
- CAPEX includes costs related to
 - DAS equipments (for example: Number of Das)
 - Cellular BS and evolved packet core (optional)
 - LoRa-gateway and RFID-gateway
- OPEX includes costs related to
 - Power consumption of network components
 - Cellular back-hauling
 - Network component repair and replacement

Accomplishments – TECHNO-ECONOMIC EVALUATION

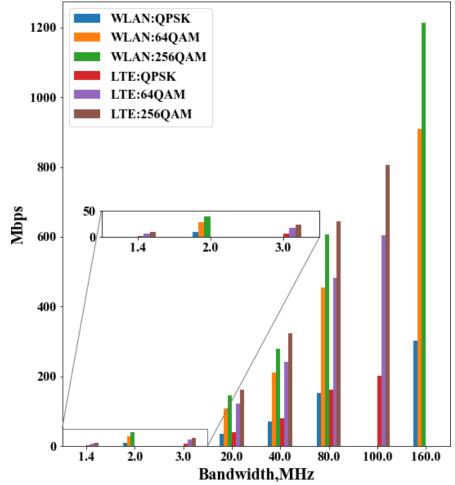
- WLAN deployment
 - Cost model mainly depends on number of APs
- CAPEX consists
 - Cost of an access point and number of access points
 - Network backhauling
 - Network equipment cost such as routers and switches
- OPEX consists
 - Power consumption of network components
 - Network component repair and replacement


Accomplishments – TECHNO-ECONOMIC EVALUATION

- Number of WLAN access points and DAS antennas based on different environment conditions
 - Moderately open
 - Slightly dense
 - moderately dense
- WLAN with 5GHz requires more number of APs due to fast signal degradation
- Dual band WLAN can give better coverage at the edge location and capacity close to APs
- WLAN with 2.4GHz gives approximately similar coverage compared to DAS


Accomplishments – Cost Analysis

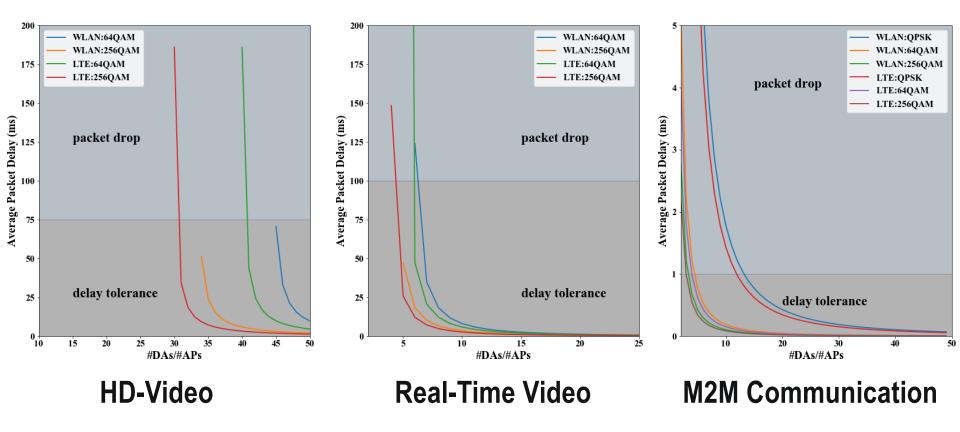
- DAS CAPEX is expensive due to expensive DAS components
- OPEX is estimated on annual basis
- Very thin cost margin between DAS with and without ISM band


Accomplishments – Cost Analysis

- Network Component repair and replacement cost
 - Failure probability equal to 0 : Component is perfect (minimal maintenance)
 - Failure probability equal to1 : Component need to be replaced

- Network throughput
 - The rate of successful data transmission
 - number of bits sent through the network per second
 - Depends on channel condition, number of users and data transmission mechanism such as modulation, bandwidth etc.
- Higher the throughput better the Quality of Service
- Latency
 - Delay, E[W] experienced by the data to be sent over the network
 - Depends on network throughput, number of users
 - Also depends on channel access mechanism (MAC protocols)
- If $E[W] > W_{delay,th}$, the data will be discarded

- Throughput per AP and DAS structure is determined for
 - Modulation: QPSK, 64-QAM and 256-QAM
 - Bandwidth:
 - 1.4MHz and 3 MHz (for low power and low data rate IoT applications)
 - 20MHz and 40MHz low data rate applications (ex. Skype)
 - 80 MHz and 160 MHz for high data rate applications(ex. 4K video)
- Both WLAN and DAS can support up to 9-Gbps data rate under high modulation



- Network latency is determined for following types of data transmissions
- To increase the capacity of network for low latency, the number of DAs/APs should be increased.

Application	Required data-rate	Required latency
HD Video	8Mbps	75ms
Real-time video conference	1Mbps	100ms
Machine to Machine (M2M) communication	50kbps	1ms

 Higher bandwidth per application can decrease network latency but spectral efficiency also decreases

- Latency calculation under different number of DAs/APs
- High-definition video requires large bandwidth

Accomplishments – Feedwater and Condensate System

- Exelon identified Feedwater and Condensate system as a target plant asset for this project
 - Calvert Cliff Nuclear Power Plant (Pressurized Water Reactor)
 - Dresden Generating Station (Boiling Water Reactor)
- Data to be shared with project team for past 10 years
 - Plant process computer data
 - Maintenance records
 - Notification logs and work orders
 - Diagrams and procedures
- Focus is on condensate pumps, booster pumps, feedwater pumps, and main condenser

Technology Impact (1)

- Advances the state of the art for nuclear application
 - Advances online monitoring at a nuclear plant site for different plant assets
 - Provides machine learning approaches to integrate and analyze heterogeneous structured and unstructured data (i.e., analytics-atscale)
 - Visualization of information to make informed decision-making
- Supports the DOE-NE research mission
 - Enhance reliability and economic operation of domestic existing fleet
 - Research outcomes can be utilized to develop maintenance strategy for next generation of advanced reactors
 - Develop talent pipeline (interns, post doctoral researchers) to support future nuclear work force

Technology Impact (2)

• Impacts the nuclear industry

- Enable industry to transition from preventive maintenance strategy to predictive maintenance strategy
- Provide a framework to perform TEA evaluation of the wireless infrastructure at a nuclear plant site with different network elements, if not all.

• Will be commercialized

- The outcomes of this research will be scaled to facilitate commercialization because the research is focused on single plant asset.
- Project team will develop a transition plant to enable transfer of research outcomes to an industrial partner

Conclusions

- Presented an envisioned wireless infrastructure with different network elements
- Performed review of TEA methodology for different wireless
 communication protocols
- Developed a general TEA framework for the envisioned wireless infrastructure
 - Simulation analysis was performed
- Identified Feedwater and Condensate System as a target balance of plant asset for development of predictive maintenance
- Working with Exelon to gain access to plant process computer data, maintenance records, and other relevant information on the feedwater and condensate system for past 10 years
 - Calvert Cliff Nuclear Power Plant
 - Dresden Generating Station
- <u>Vivek.Agarwal@inl.gov</u> any additional questions that may not be answered during the webinar.

Clean. Reliable. Nuclear.