

In-Pile Sensor Fabrication by Advanced Manufacturing

Advanced Sensors and Instrumentation Annual Webinar October 30, 2019

PI Michael McMurtrey, INL Presenter Kiyo Fujimoto, INL, BSU

Project Overview

• **Goal**: To enable the production of novel sensor designs for *in-pile sensors* and instrumentation by utilizing advanced manufacturing techniques.

• FY19 objective:

- Develop new plasma printing technology to print a variety of sensor materials for test reactors
 - neutron flux, mechanical strain, thermal conductivity and peak temperatures
- To use combinatorial materials science to expedite the development of radiation hardened sensor materials.

• Participants (2019)

- Michael McMurtrey, INL
- Kiyo Fujimoto, INL, BSU –
- Kunal Mondal, INL

- Joseph Bass, INL
- Dave Estrada, BSU
- Austin Biaggne, BSU
- Lan Li, BSU
- Yanliang Zhang, ND
- Nicholas Kempf, ND

Project Overview

Three activities working together to achieve project objectives:

• Process control and sensor fabrication (INL, BSU)

- Refine advanced manufacturing processing parameters to create robust and reliable sensors (minimal voids/defects, good adhesion to the substrates).
- Develop advanced manufacturing capabilities for sensor fabrication
- Ink and feedstock synthesis (INL, BSU)
 - Ink/feedstock development and characterization to enable the fabrication sensors/instrumentation with advanced manufacturing techniques.

Combinatorial Materials Science (INL, ND)

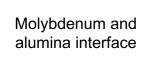
 Develop combinatorial materials science methods for the rapid screening of materials for use in instrumentation such as strain gauges and thermocouples.

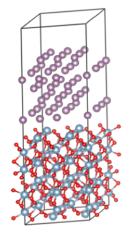
Accomplishments

- Plasma jet printer sensor fabrication with process parameters optimized by simulation input: *Report submitted 9/30/19*
- Demonstrate the fabrication of passive neutron dosimeters for in-pile applications using advanced manufacturing: *Report submitted* 5/23/19
- Finalize recipes and procedures for synthesis of iron, cobalt, zinc, tungsten and indium nano-particle inks: *Report submitted 6/20/19*
- Develop molybdenum, niobium and platinum inks compatible with plasma jet printing: *Report submitted 12/20/18*
- Examine radiation effects on sensor material composition using ion irradiations and high-throughput combinatorial material testing: *Report submitted 9/30/19*
- Complete scanning probe system to perform electrical conductivity and thermal conductivity combinatorial material studies: *Report submitted 1/31/19*

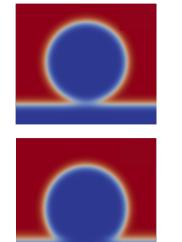
Process Control and Sensor Fabrication

Ink and Feedstock Development

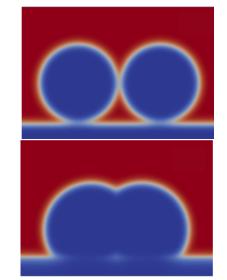

Combinatorial Materials Science

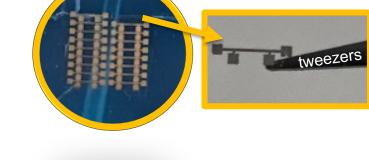

energy.gov/ne

Accomplishments: Aerosol and Plasma Jet Printing

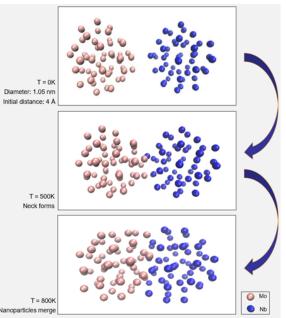

Process control

- Density functional theory (DFT) and ab-initio molecular dynamics used for atomic scale, phase field used for actual scale
- Input from modelling/simulation to inform experimental process parameters to improve sensor robustness and materials studies





Initial (top) and equilibrium (bottom) nickel on alumina substrate at 1000 °C.



Initial (top) and equilibrium (bottom) nickel particles on alumina substrate at 1000 °C.

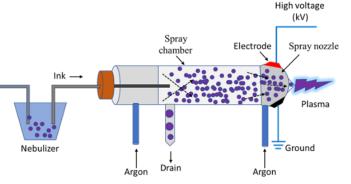
Sintering of two 1 nm nanoparticles (one Mo and one Nb) at 0K, 500K and 800K.

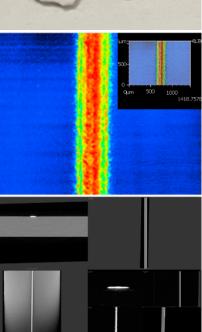
energy.gov/ne

Accomplishments: Aerosol and Plasma Jet Printing

Sensor Fabrication

- Focus has been on aerosol jet and plasma jet printing techniques
- Method developed for small melt-wire chip for use in limited space experiments


Plasma jet printed copper line


INL plasma jet printer

6

*3 RTE's (2-MIBL 1-MITR) have been leveraged to perform irradiation experiments on printed structures using commercially available inks

AJP copper line on alumina

Accomplishments: Ink and Feedstock Fabrication

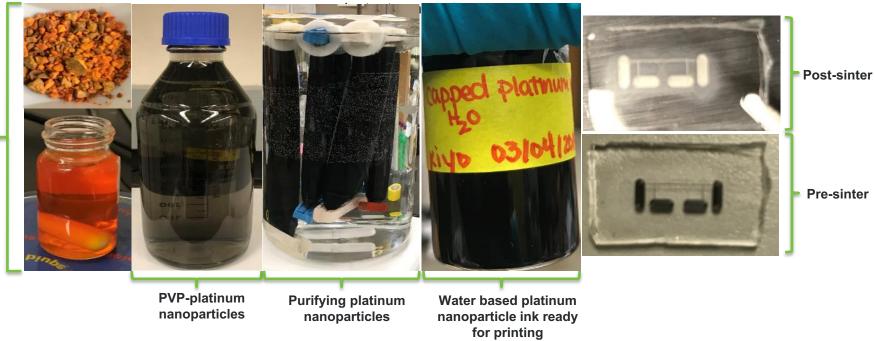
- Novel material inks are needed for printing techniques used in advanced manufacturing techniques for sensor fabrication
- Platinum, molybdenum, niobium, iron, cobalt, zinc, tungsten and indium nanoparticle inks were developed in FY19 (highlighted in yellow)
- Two general methods of synthesis: Top-down and bottom-up

	Material	Ink Status	Sensor	
	Ag	Commercial	Melt wires, dosimeters	
	Cu	Commercial	Melt wires	Ti ND
Ag	Ni	Commercial	Melt wires	
	Pt	BSU/INL	Melt wires, 3-omega, Strain gauge	
0 0 0	Ti	BSU/INL	Melt wires, dosimeters	
	Nb	BSU/INL	Dosimeters	
	Мо	BSU/INL	Dosimeters	
	Со	BSU/INL	Melt wires, dosimeters	Pt
Cu	Fe	BSU/INL	Melt wires, dosimeters	interdigitated electrode
	W	BSU/INL	Melt wires, dosimeters	electione
0	Zn	BSU/INL	dosimeters	
	In	BSU/INL	dosimeters	
	AI2O3	BSU/INL	Insulator	
ST NIEC	CeO2	BSU/INL	Insulator	
	<u></u>			Pt with

Accomplishments: Ink and Feedstock Fabrication

Top-Down Methods

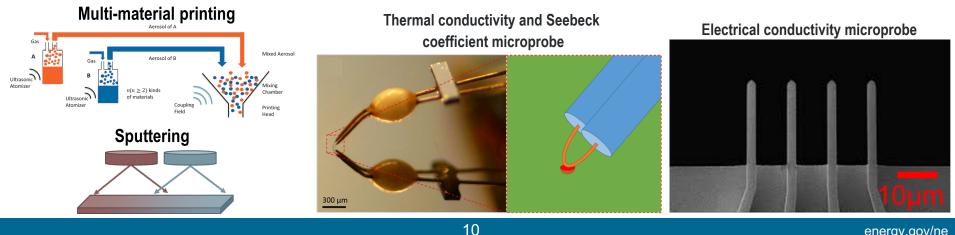
All developed inks were synthesized via top-down methods


Accomplishments: Ink and Feedstock Fabrication

Bottom-Up Methods

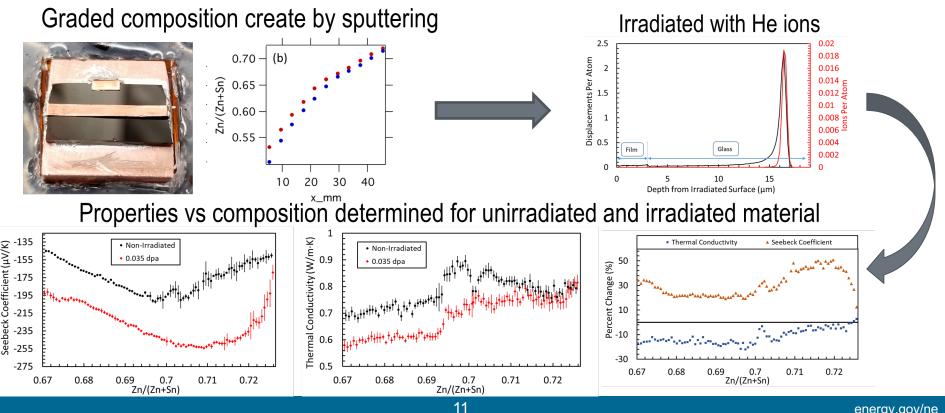
platinum salt

- Bottom-up synthesis allows for tighter nano-particle size distribution and smaller sizes
- These methods are being published and may be used by commercial companies to expand the commercially available materials


Bottom-up platinum ink synthesis for AJP/PJP

Accomplishments: Combinatorial Materials Science

Combinatorial Materials Science


- Combinatorial materials science combined with high-throughput screening methodology offers potential for rapid discovery and development of radiation-resistant sensor materials
- Two major challenges associated with combinatorial materials science that must be overcome for valid high-throughput testing
 - Creation of the combinatorial material A design has been created and components purchased for a combinatorial printer. Multi-target sputtering has also been explored for created graded compositions
 - Localized measurements A high resolution thermal microprobe capable of both thermal conductivity and Seebeck coefficient measurements has been developed, along with an electrical conductivity microprobe

Accomplishments: Combinatorial Materials Science

Combinatorial materials science

- A trial run was performed this year to demonstrate this technique on a combinatorial ZnSnN₂ film manufactured via sputtering.
- This will be expanded to other material of interest to improve sensor base properties and irradiation resistance

Technology Impact

- Our work is focused towards advanced manufacturing for in-pile applications
- We currently have a program interested in implementing advanced manufactured sensors (AFC-FAST)
- InFlex, LLC Spin off from ink synthesis developments.

WFlex Labs, LLC.

Materials and Technology for a Flexible World

- A provisional patent has been assigned for the work on aqueous based inks
 - "Aqueous Based Nanoparticle Ink For Aerosol Jet Printing-Ultrasonic Atomizer and Plasma Jet Printing and Other Printed Electronic Direct Write Methods"

Conclusion

Future Work

- One of the primary focuses of FY20 will be thermocouples, examining printed thermocouples and using combinatorial material studies to improve the thermocouple material.
- Ink synthesis will shift to piezo-electric and magnetostrictive inks for use with the ultrasonic thermometer.
- Additional work will examine additional advanced manufacturing techniques for cases where inkjet printing is not adequate

Questions?

Follow up questions after the webinar can be sent to: michael.mcmurtrey@inl.gov

Clean. Reliable. Nuclear.