

Transmission of Information by Acoustic Communication Along Metal Pathways in Nuclear Facilities

Advanced Sensors and Instrumentation Annual Webinar

October 23, 2019

Alexander Heifetz and Richard Vilim Argonne National Laboratory

Project Overview

Goal and Objective

 Demonstrate ability to transmit information through physical boundaries at a nuclear facility

• Participants (2019)

 Alexander Heifetz, Dmitry Shribak, Sasan Bakhtiari, Richard B.
Vilim – Argonne, Xin Huang, Boyang Wang, Jafar Saniie – Illinois Tech, Andrew C. Singer - UIUC

Schedule

- Y1: developed system requirements and implemented ultrasonic communication setup on a pipe
- Y2: demonstrated ultrasonic data transmission on room temperature pipe
- Y3: demonstrated ultrasonic data transmission on elevated temperature pipe

Deliverables

- Final Report for Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities, ANL-19/42, September 30, 2019.
- Evaluation of Acoustic Channel Capacity for Complex Piping Topology, ANL-19/28, August 30, 2019.
- Small-Scale Demonstration of Communication LAN Prototype, August 15, 2019.
- Tradeoffs in Parameter Values for Optimal Performance, ANL-19/11, March 29, 2019.

Developed System Specification

- Focused on acoustic transmission of information in an out of the containment building
- Containment walls are 4 to 5 feet thick concrete with steel liner
 - Blocks RF transmission
- Proposed acoustic communication system at a nuclear facility would transmit information on steel pipes already in place for nuclear reactor operation

Developed System Specification

- Identified charging line stainless steel pipe of chemical volume control system (CVCS) as viable conduit for information transmission in and out of containment building
 - Pipe penetrates containment wall through a tunnel in concrete sealed on both ends by steel plates
- Transducer operating conditions are specified by containment isolation function

Parameter	Normal	Accident
Temperature	50-120 °F	300 °F
Pressure	atmospheric	70 psig, max
Relative Humidity	30-100 %	100 %
Radiation	50 rads/hr	150 Mrads/hr

Typical environmental stresses on containment isolation function components

- Developed test article for proof-ofprinciple studies
 - Schedule 160 stainless steel pipe with baffle plates to simulate mechanical constraints at actual NPP
 - Demonstrated resilience of ultrasonic data transmission over pipe to low frequency noise
 - Experimentally simulated process noise with mechanical shaker vibrating a pipe
 - Vibrated pipe with 100Hz, 1KHz, 10KHz
 - Observed no interference effect on ultrasonic 2MHz shear wave informationcarrying signal

Frequencytunable mechanical shaker in contact with pipe

Developed Nuclear Pipe Ultrasonic Communication System

- (1) Digital computer with GNURadio software
- 2) RedPitaya transmitter board
- (3) Power amplifier,
- (4) Angled-wedge mounted PZT transmitting refracted shear waves
- (5) Stainless steel pipe
- (6) Angled-wedge mounted PZT receiving shear waves
- (7) Low noise amplifier
- (8) RedPitaya receiver board
- (9) Digital oscilloscope

- Ultrasonic image transmission on a pipe at room temperature
 - Developed ASK communication protocol in GNURadio environment
 - Transducers are separated by 170cm on a pipe
 - Carrier frequency is 1.8MHz
 - 2Kbps data rate (bit pulse duration is 500 µs)
 - BER~10⁻³

32KB image

 Developed Ultrasonic Communication System on Elevated Temperature Pipes

- (1) Digital computer with GNURadio software
- (2) RedPitaya transmitter board
- (3) Power amplifier
- (4) LiNbO₃ ultrasonic transmitter
- (5) Stainless steel pipe
- (6) Thermal insulation layer
- (7) LiNbO₃ ultrasonic receiver
- (8) Low noise amplifier
- (9) RedPitaya receiver board
- (10) Digital oscilloscope.

- Ultrasonic image transmission on a heated pipe
 - Used the ASK transmission protocol implemented in GNURadio environment
 - ISI suppressed with RRC filter
 - Pipe heated to 50°C and 150°C
 - Transducers separated by 170cm on a pipe
 - Carrier frequency is 728 kHz
 - 10KBps data rate (bit pulse duration is 100µs)
 - BER ~10⁻³

♦ 01:21.55 <

- Complex piping topology in representative environment
 - Developed bent piping test article for signal transmission evaluation

Demonstrated signal transmission with time-reversal modulation

Publications/Presentations

- **One** paper under review in *IEEE Transactions of Ultrasonics, Ferroelectrics and Frequency Control*
- One paper to be submitted to Nuclear Technology
- Four papers in Proceedings of IEEE International Ultrasonics Symposium (IUS)
- Four papers in Proceedings of IEEE International Conference on Electro/ Information Technology (EIT) (including Best Paper Award)
- One paper in Proceedings of Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies (NPIC&HMIT)
- One paper to appear in *Transactions of ANS Winter Meeting*
- Submitted R&D100 application
- Project work profiled twice by ANL Media Office

Technology Impact

- Advances the state of the art for nuclear application
 - Provides capability to transmit information across physical barriers at a nuclear facility using in-place piping infrastructure
- Supports the DOE-NE research mission
 - Develops new means of secure and accident-resilient communication at a nuclear facility applicable to different reactor types
- Impacts the nuclear industry
 - Helps to increase safety of existing and future nuclear power plants
- Will be commercialized
 - US Patent Application 15/947,303 has been filed by A. Heifetz, R.B. Vilim, S. Bakhtiari in 2018.

Conclusion

- Demonstrated information transmission on nuclear grade stainless steel pipe using ultrasonic transducers
 - Demonstrated high-bitrate ultrasonic transmission of images on a pipe at simulated normal and post-accident conditions
 - Conducted preliminary studies for ultrasonic communication over piping manifolds
- Contact Information
 - <u>aheifetz@anl.gov</u>
 - 630-252-4429

Clean. Reliable. Nuclear.