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Overall System Description




Transtormational Challenge Reactor (TCR) is ©
microreactor using helium as the working fluid

« TCR adopts a simple loop physical building
design with air-dump heat
exchdngers Vented confinement e
« Modest thermal power o
offers inherent safety and oypss '
reduced source term — j@ Helum to A

Heat Exchanger
AM Core
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TCR core design seeks to bring to bear the latest
advances in manufacturing, materials, and
computational sciences

« Compact, optimized,
Innovative core design that
exploits unigue advantages
of additive manufacturing /

e Uses materials that have
industrial pedigree

~ &

reflector

e Novel ex-vessel control and
protection schemes

bioshield

concrete

Concept rendering of TCR nuclear island
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Monitoring to assess quality during deanced
manufacturing (in situ)
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Conceptual I&C System Architecture

« TCR I&C will follow a simplistic design approach
- Reduce potential regulatory risk

- Employ endorsed platforms with known industrial
pedigree

« Reactor Protection System (RPS) T
- Analog platform is our baseline I l I l

— Eliminates the potential common-cause risk e e S e e e e e I e L
— Inherently addresses the diversity requirement T %T m ql .

« Reactor Control System (RCS) il S

- An endorsed digital platform

System

SCRAM Reactor startup and shutdown
* Troubled Condition Handling

— Must be able to support autonomous conftrol
demonstration
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- FPGA options are being considered R (e e cas
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« All auxiliary data acquisition (embedded sensors)
will be handled by a commercial-grade
independent platform
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Development of TCR 1&C requirements

 We will issue System Design Description (SDD) documents for systems
- Input to SAR

« Requirements will be drawn from Interim Staff Guidance (ISG) issued
to replace NUREG-1537 Chapter 7

Access Control, Control Rad
Criteria Cyber Security, RES KFS ESFAS | console Monitoring
Digital I&C 73 | 74 /e 7.6 7.7
X X X
X X X X N P
X X
FailSafe ] X X X X
X
X X
X X
X X X
X
X X X X X
X X Lower <&
HumanFactors X X X X
X coolant
X manifold
Quality X X X X X
X
. X



I %OA RIDGE
National Laboratory

Embedment of Sensors Into
Addifively Manufactured
Structures




TCR Is targeting incorporation of existing sensors info
core structural components to provide supplementary
data for enhanced operation health monitoring

Top-down view

Radial section

{
{
H

Axial section

316L sheathed sensorin AM 316L build Mo sheathed sensor in SiCbuild
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Goals of TCR FY 192 Metal Embedded Sensor Project

 |dentify suitable commercial nuclear grade off-the-shelf sensor candidates
for embedding

« Quantitatively investigate energy deposition process, melt pool geometry,
thermal impacts and dimensional impacts on structure
— Final build characteristics vs. design
— Sensor/part interface quality
— Sensor integrity post build

« Fabricate embedded sensor prototypes that demonstrate feasibility of
tortuous routing paths not possible conventionally

Parametric study build plate

Printed Top

The constant
depth voids are
set at 5x layers
(250pm)

A

Depth
Variation

Width
Variation

Laser Milled Plate 10 steps increasing 2x layers (100um) Added bridges between steps to
Characterization each step prevent deformation



FY19 Results

Void Profile for Parametric
Deposition Study

 AM build resolutions for Selective Laser
Melting (SLM) evaluated for nominal 1 mm

TCs

« Parametrically varied build geometry
designed for studying AM deposition

« Workflows and methods developed for
embedding nuclear grade K-Type Plasma Spot Welded
Thermocouples TC Securement

— ‘Stop and Go' emplacement strategy pursued

— Procedures developed for shaping sensor prior to
embedment

— Plasma spot welding parameters defined for
securing sensor during AM build

Average 102 260
Maximum 108 301

Minimum 98 217
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FY19 results continued

Failed Parametric Build

« Initial parametric build prototype failed due to warpage
— Results currently being X-Ray CT scanned
— Improved attachment to build plate planned

» First embedded sensor concepts successfully fabricated

— Build evaluation still ongoing

— Improved registration approach required to improve alignment
following emplacement

— Temperature cycling performance testing planned for Q1 FY20

Hexagonal Concept Demo for Embedded Embedded Thermocouple Hexagonal Prototype

National Laboratory installing thermocouple tubing/thermocouple
post-print in stop-and-go process
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Embedding sensors in 3D-printed SiC

. in SiC
« Sensors must survive CVI process: H, + S

HCI, >1,000°C for tens of hours

» Successfully embedded metal
sheaths and optical fibers in SiC

« Mo interactions with Si and C limited
to a few um

« W, Nb, and Ta also embedded

SiC -

/ Iayer\

\

. §iC (4

SiK

Mo/Si
interaction
N
Mo/C
interaction ‘
\ Pore

Embedded Au-coated optical fiber > t

OAK RIDGE Embedded moly sensor sheath :
&Naﬁonal Laboratory C.M. Petrie et al., "Embedment of sensors in ceramic structures,” ORNL/SPR-2019/1301, (2019). —M




Embedding fiber optics in metals for high-temperature strain monitoring

e Successful , D
monitoring of ' ,/i-ntleag:cres
thermal strain in ‘
embedded fiber
Sensors to
temperatures

>500°C [1,2]

e Fibers embedded in
SS304 expected to
survive to 600-800°C
(testing in progress)

Au-coated optical fiber embedded in $$304 using ultrasonic additive manufacturing (UAM)

[1] C.M. Petrie, N. Sridharan, M. Subramanian, A. Hehr, M. Norfolk, and J. Sheridan, “Embedded metallized optical fibers for high
temperature applications,” Smart Materials and Structures, Vol. 28 (2019), p. 055012.
[2] C.M. Petrie, N. Sridharan, A. Hehr, M. Norfolk, and J. Sheridan, “High-temperature strain monitoring of stainless steel using fiber optics

QAK RIDGE embedded in ultrasonically consolidated nickel layers,” Smart Materials and Structures, Vol. 28 (2019), p. 085041.
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Autonomous Control:
Automated Start-Up
Procedures




Overall Flow

1. Test supporting equipment
2. Insert Safety Rods

3. Insert Control Rods to Subcritical position _ _ _ _
3b. or perform special data-collection rod insertions Rod insertion order determined by user input
before procedure is called

4. Final approach to criticality

Automated_Start_Up

.

| {subcrit_cR_eval = 0]
i{ml;ﬁﬂcﬁ,mlis)wdw Control_Rod_insert_to_60cent \pproach_to_Criticaiit
|
3
— Za h - {CR_Scram_signal = 0} I |
(Satety_Rod_Insertion A O |
|
|
.
|

[Test_Secondary_Pump Bulkk NA temp_sat)
.

[Safety_Rod_Inserion.SR_position_saf] 1

2

Subcrit_CR_eval == 1] SUbCrit_CountR Eval
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However, every state cannot be checking that all previous parameters remain SAT

Therefore, introducing a parallel state machine to observe critical parameters

The observer will consist of many parallel machines with 3 states:
, , and

'SR_Height_Safety_Obs

!

Deactivated

SR_Height_Obs [SR_Height_Obs.data >= 0] Activated
{setpoint = SR_Height_Obs.data}

J( SR_Height_Obs [SR_Height_Obs.data < 0]

-

[SR_Height < setpoint]

Tripped

en:
Emergency_Pause.data = Emergency_Pause.data + 1;
send(Emergency_Pause);
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