



Demonstration of Integrated Hydrogen Production and Consumption for Improved Utility Operations

Monjid Hamdan VP of Engineering

2019 Fuel Cell Seminar & Energy Exposition H2@Scale Initiative Long Beach, CA., Nov 05<sup>th</sup>, 2019

### **Company Profile**

#### **Electrolyzer Stacks & Systems**

- Giner, Inc., Founded in 1973
- Specializing in development of PEM based electrochemical technologies and systems
  - Key driver: Manufacturing of PEM electrolyzers to OEMs
  - Global leader in Polymer Electrolyte
     Membrane (PEM)-based electrolyzers
  - Highest efficiency technology for commercial applications
- Core Mission: Provide Innovative PEM Technologies with the Highest Efficiencies at the Lowest Costs to Developing Hydrogen Markets
- In April 2017, GINER ELX, Inc. was created to focus on commercial development and manufacturing of large scale electrolyzer stacks & systems



#### Integrated Hydrogen Production and Consumption for Improved Utility Operations

#### **Project Objectives**

- Develop integrated system incorporating PEMbased electrolysis for H<sub>2</sub> production/storage and H<sub>2</sub>-fuel for refueling of FCEVs
- Electricity generation with site-specific PEMbased stationary fuel cells
- Develop/Optimize dispatch models based on grid-level optimization controls

#### Impact

- Deployment of Grid-Integrated Hydrogen assets creates a system capable of leveraging intermittently available low-cost electricity to produce hydrogen for use in FCEVs, back-up power, and grid operational use cases
  - Ensures that the hydrogen is produced at the lowest electricity cost, and then consumed for the greatest possible value
  - Develops business models for OUC or other utilities, where the utility provides both electricity and hydrogen fuel, either as a grid asset of to support the transportation sector



Utility Co. / Solar Integration / FC Vehicles
 General Motors
 OneH2
 UCF-FSEC
 Giner ELX, Inc.

## Background

Hydrogen Offers a Green Solution to Intermittent renewables

- Rapid implementation of solar has led to storage needs more quickly than anticipated
- Solution: PEM Electrolyzer with fast response time, and be scalable to TWh
  - Electrolyzers can provide grid services & renewably generated hydrogen for mobility with fast response time as a controllable load
- Development of Hydrogen Markets are needed





GINERELX

- OUC, No. 1 in reliability since 1998<sup>2</sup>
- OUC's solar penetration is <1%, but increasing rapidly to 15% by 2022, plans to integrate 30% solar by 2024+



Sources: <sup>1</sup> CAISO. <sup>2</sup> Florida Public Service Commission. <sup>3</sup>OUC.

#### **Hydrogen Markets**





## **Hydrogen Markets**

**PEM** Electrolysis Compliments a Multitude of Industries Hydrogen Markets from PEM Electrolysis





2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

- Global PEM Electrolyzer market, a segment of a larger trend
- PEM market increasing at rapid pace with new market developments and rapid cost reductions
- \$1.3 B by 2027<sup>1</sup>
- Hydrogen: Versatile energy carrier enabling renewable energy systems

#### **Hydrogen Markets**



Market

energy systems



Sources: <sup>1</sup>Allied Market Research <sup>2</sup>cleantechnica.com 08/21//2018

7

## **Program Tasks**

| Year 1                                                                          |                                                             |                                                                                                                                                                         | Year 2                                                                                                                             |                                           |                                                                        | Year 3                                                                                                                                                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Develop utility control architecture to dispatch integrated</li> </ul> |                                                             |                                                                                                                                                                         | <ul> <li>Complete system unit assemblies</li> <li>Integration of individual system units with Utility<br/>(OUC Utility)</li> </ul> |                                           |                                                                        | <ul> <li>Integrated Operation</li> <li>Demonstrate integrated system dispatch with utility</li> <li>Complete economic and market feasibility studies,<br/>establishing multiple value streams for hydrogen</li> </ul> |                                                                  |                                                                                                                                                                                                                                                                                                                      |
| Task<br>No.                                                                     | Task Title                                                  | Description                                                                                                                                                             | Task<br>No.                                                                                                                        | Task Title                                | Description                                                            | Task<br>No.                                                                                                                                                                                                           | Task Title                                                       | Description                                                                                                                                                                                                                                                                                                          |
| 1                                                                               | Techno-<br>Economic<br>Feasibility<br>Study                 | Complete Techno-Economic Feasibility<br>Study. Demonstration path to achieve \$2-<br>4/kg.                                                                              | 6                                                                                                                                  | Electrolyzer<br>Delivery &<br>Integration | Electrolyzer Delivery & Integration                                    |                                                                                                                                                                                                                       | Systems<br>Operations                                            | Complete test plan detailing<br>operating conditions, the range of<br>parameters to be evaluated, data<br>acquisition requirements and a                                                                                                                                                                             |
| 2                                                                               | Electrolyzer<br>System<br>Design                            | Complete preliminary design of Merrimack<br>electrolyzer unit. Delivery: P&ID & PFD<br>diagrams, HazOp studies, layout, manuals for<br>90 Nm3/hr system                 | 7                                                                                                                                  | Fuel Cell<br>Delivery &<br>Integration    | Fuel Cell Delivery &<br>Integration                                    | 10                                                                                                                                                                                                                    | Commission<br>ing<br>Techno-<br>Economic<br>Feasibility<br>Study | safety plan.<br>Complete commissioning of the<br>integrated electrolyzer, fuel cell,<br>and storage system into OUC host<br>utility grid<br>Initiate operation. Demonstrate<br>integrated system operation couple<br>to OUC grid. Verify Techno-<br>economic studies (conducted in<br>Task 1) with actual operation. |
| 3                                                                               | Fuel cell-<br>based power<br>generation<br>system<br>Design | Complete optimization/design of fuel cell-<br>based power generation system.                                                                                            | 8                                                                                                                                  | Hydrogen<br>Storage<br>Delivery and       | Hydrogen Storage Delivery<br>and Integration                           |                                                                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                      |
| 4                                                                               | Hydrogen<br>Storage,<br>Dispensing<br>Design                | Complete sizing of the storage system to meet hydrogen delivery demands, including vehicular and stationary fuel cell applications.                                     |                                                                                                                                    | Integration<br>Controls                   | Complete                                                               | 11                                                                                                                                                                                                                    |                                                                  |                                                                                                                                                                                                                                                                                                                      |
| 5a                                                                              | OUC Host<br>Site Design<br>and<br>Preparation               | Complete site prep for systems integration                                                                                                                              | 9                                                                                                                                  |                                           | communications/controls<br>integration and<br>cybersecurity assessment |                                                                                                                                                                                                                       | System<br>Feasibility<br>Studies                                 | Demonstrate grid peak shaving,<br>load shifting, & PV smoothing.<br>Demonstrate multiple usage<br>profiles explored with FCEV, and<br>customer service models such as<br>demand reduction and emergency<br>back-up power.                                                                                            |
| 5b                                                                              | OUC<br>Development<br>of Economic<br>Dispatch<br>Models     | Complete Economic Dispatch Models. This information will be used to develop utility control architecture (and will be an ongoing process that will be optimized in Y2). | 10                                                                                                                                 | Fuel Cell<br>Vehicle<br>Procurement       | Fuel Cell Vehicle<br>Procurement                                       |                                                                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                      |

**^** 



Giner ELX Inc. 89 Rumford Ave, Newton, Ma. 02466

Monjid Hamdan VP of Engineering mhamdan@GinerELX.com

# **QUESTIONS?**