

The Methanol Economy: Methanol as a Fuel, Chemical Feedstock and a Convenient Liquid Hydrogen Carrier

G. K. Surya Prakash Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California Los Angeles, CA 90089-1661

Panelist – Chemical Energy Storage H₂@Scale Session Fuel Cell Seminar Long Beach Convention Center Long Beach, CA Tuesday, November 5, 2019

The Methanol Economy: Methanol as a fuel and feed-stock

Methanol in Internal Combustion Engines

Contained to the smaller volume-results in higher compression ratio

Methanol has also has higher "flame speed"- higher efficiency

Higher latent heat of vaporization (3.7 times higher than gasoline)- can absorb heat better - removes heat from the engine- air cooled engines. Can be blended with gasoline in various ratio (M5, M10, M15, M85 up to M100)

♦GEM fuels, gasoline/ethanol/methanol also possible (Lotus)

✤Methanol burns better- cleaner emissions; less NO_x and PM

Safer fuel in fires than gasoline

✤Methanol is a liquid which can be dispensed in regular gas station requiring only limited modifications (unlike H₂)

Compatible with hybrid (fuel/electric) systems

Methanol Reforming to Hydrogen

Other C₁ feedstocks for comparison $CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2 (19\%)$ $HCOOH \longrightarrow H_2 + CO_2 (4.34\%)$

 S0 L Hk @ 200 bar

 +50 L og 63 kg

 S0 L Hk @ 200 bar

 S0 L Hk @ 200 bar

Danish Technological Institute Report

Methanol-powered fuel cell as range extender for electric vehicles

High temperature PEM fuel cell more tolerant towards CO poisoning (*Serenergy*, Denmark).

Can be used as a range extender in electrical vehicles and devices. Hybrid system has lower weight

Range extended from about 150 km to up to 800 km with the HTPEM FC range extender

Blue World Technologies, Denmark, 50,000 15 KW stacks, Palcan Motors

Amine-Promoted Reforming of Methanol

$$\begin{array}{rcl} & 12.1 \ wt\% \ H_2 \\ & CH_3OH \ + \ H_2O & \underbrace{Cat. \ I} \\ & Cat. \ II \end{array} \quad CO_2 \ & + \ 3 \ H_2 \ & \\ \hline & Cat. \ II \end{array}$$

Hydrogenation of CO₂ to methanol and the reverse reaction (2011-to date): Leitner, Sanford, Olah/Prakash, Beller, Hazari, Crabtree, Grutzmacher, Milstein and Fujita.

Ortega, N.; Richter, C.; Glorius, F. *Org. Lett.* **2013**, *15*, 1776–1779. Kim, S. H.; Hong, S. H. *Org. Lett.* **2016**, *18*, 212–215.

Direct oxidation methanol fuel cell (DMFC) USC, JPL - Caltech

Anodic Reaction: $CH_3OH + H_2O \xrightarrow{Pt-Ru (50:50)} CO_2 + 6 H^+ + 6 e^ E^o = 0.006 V$ Cathodic Reaction: $3/2 O_2 + 6 H^+ + 6 e^- \xrightarrow{Pt} 3H_2O$ $E^o = 1.22 V$ Overall Reaction: $CH_3OH + 3/2 O_2 \xrightarrow{} CO_2 + H_2O$ + electricity $E_{cell} = 1.214 V$

US Patent, 5,599,638, February 4, 1997; Eur. Patent 0755 576 B1, March 5, 2008.

Capture of CO₂ from the Air and Recycling to Fuels and Materials

Geothermal Methanol from CO₂

CRI Carbon Recycling International

"George Olah CO₂ to Renewable Methanol Plant"
HS Orka Svartsengi Geothermal Power Plant, Iceland Production Capacity: 12 t/day

About 40 kWh are needed to produce a gallon of methanol (11 kWh/L), Methanex and Geely are the major share holders

