

Energy Efficiency & Renewable Energy

Flexible Material WEC Technology Techno-Economic Performance

2.2.1.407 / 34265

(Illustrations Various FlexWEC Concepts)

Marine and Hydrokinetics Program

9 October 2019

Jochem Weber

National Renewable Energy Laboratory

Project Overview

ENERGY Energy Efficiency & Renewable Energy

Project Summary

To investigate, innovate, assess, describe, and summarize the potential use of flexible materials with embedded distributed power (FMPDP) take-off systems for ocean wave energy conversion (WEC). To also disseminate results from the project to the renewable energy sector—showcasing the technology's potential for heightened technoeconomic performance.

Project Objective & Impact

Primary Objectives: (1) System description, modeling, and investigation of FMDP-WEC concepts; (2) assessment of cost and performance drivers; (3) determination of techno-economic performance metrics; (4) assessment of achievability, remaining development costs, time, and risk to market; and (5) technical outreach to ensure impact and benefit for wider research, U.S. industry interest, and stakeholder satisfaction are understood and prioritized.

Impact: Renewable energy sector can benefit from this project as its results will identify whether another WEC technology and/or its subsystems show potential, promoting heightened techno-economic performance.

Project Information

Project Principal Investigator(s)

Jochem Weber, Chief Engineer, Ph.D.

WPTO Lead

Lauren Moraski

Project Partners/Subs

SBM Offshore—Information Source Centrale Nantes—Scientific Advisory Wave Venture—Scientific Advisory Plymouth University—Scientific Advisory

Project Duration

Start Date:1 July 2018Project End Date:31 March 2020

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing

Alignment with the MHK Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Foundational and Crosscutting R&D

- Driving innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications.
- Developing, improving, and validating numerical and experimental tools and methodologies needed to improve understanding of important fluidstructure interactions.

 Flexible materials with distributed power takeoff systems embedded throughout (FMDP-WEC), appear to have many attractive characteristics: (1) broad-banded ocean wave energy absorption; (2) highly redundant multiplexed power take-off (PTO) systems; (3) near-continuous structural actuation and PTO control; (4) low cost and ease of material manufacture; and (5) simplified shipment and ocean deployment requirements.

- Development of new and novel numerical modeling schemes needed for modeling of flexible materials with distributed embedded PTO systems.
- Development of benchtop apparatus for empirical evaluation of flexible materials with distributed embedded PTO systems.

FY17	FY18	FY19 (Q1 & Q2 Only)	Total Project Budget FY17-FY19 Q1 & Q2 (October 2016 – March 2019)	
Costed	Costed	Costed	Total Costed	Total Authorized
\$0K	\$OK	\$51K	\$51K	\$426K

- FY19 Q3 and Q4 saw a noticeable increase in project expenditures as increased staff involvement and research are being conducted.
- Current expenditures are on pace with authorized budget.

ENERGY Energy Efficiency & Renewable Energy

Summarized Research Questions:

- What is the potential for those WECs with structures based upon flexible materials and whose power take-off systems are both embedded and distributed throughout that structure?
- Do FMDP-WECs represent a fundamental paradigm shift towards greater techno-economic feasibility for WEC development and commercialization?

Summarized Technical Approach:

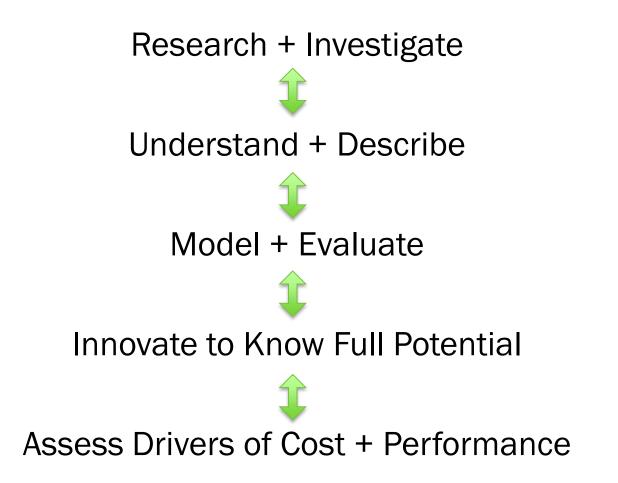
- Research, distill, describe, and model those archetypical characteristics defining FMDP-WECs.
- Identify those cost-performance drivers predominantly associated with FMDP-WECs technologies.
- Assess the potential for FMDP-WECs to be game-changing, paradigm-shifting forms of WEC technology.
- Dissemination of results for review (e.g., journals, conferences, project website).

Summarized Management Approach:

- Regular counsel from external scientific advisors.
- Routine supervision via DOE meetings and updates.
- Inclusion of input from the Marine Energy Council.
- Incorporation of known industrial developer of FMDP-WEC technology.

U.S. DEPARTMENT OF

Basic Project Schedule: Flexible Material WEC Technology Techno-Economic Performance							
Q4 2018	Q1 2019	Q2 2019	Q3 2019	Q4 2019	Q1 2020	Q2 2020	
•Project spool up.	 Interface with industry and scientific advisors regarding current state of the art and/or reference cases. Investigation into theoretical and numerical modeling methods. 	 New hire Literature review and comprehension development for FMDP-WEC technologies. Onset of numerical modeling efforts. 	 Intern hire Further FMDP-WEC technology research. Identifying cost-performance drivers. Implementation of structured assessment and innovation for FMDP-WEC technology awareness. 	 New hire Bench apparatus development to characterize flexible materials and PTOs. Distillation of numerical modeling efforts. 	 Preparation and development of project website for public dissemination of information. Assessment of cost- performance drivers of FMDP-WEC archetype(s). 	 Finalize project tasks and deliverables. Look towards future and embarking upon those trajectories for continued FDMP-WEC research and development. 	
	 Internal Report: Description of FMDP-WEC reference cases. 	 Internal Report: Description of theoretical and numerical modeling approach. Webinar for industry input. 	 Internal Report: Numerical model method. 	 Internal Report: Numerical simulation results and model's effectiveness. Internal Report: Cost and performance drivers. 		 Internal Report: Describing life cycle of FDMP- WEC, application of FDMP-WEC technology, and opportunity for FDMP-WEC farms. 	
	cases.	approach. •Webinar for		 Internal Report: Cost and performance 	ones	technology, an opportunity for FDMP-WEC	


7 | Water Power Technologies Office

eere.energy.gov

ENERGY Energ

Energy Efficiency & Renewable Energy

Technical Approach

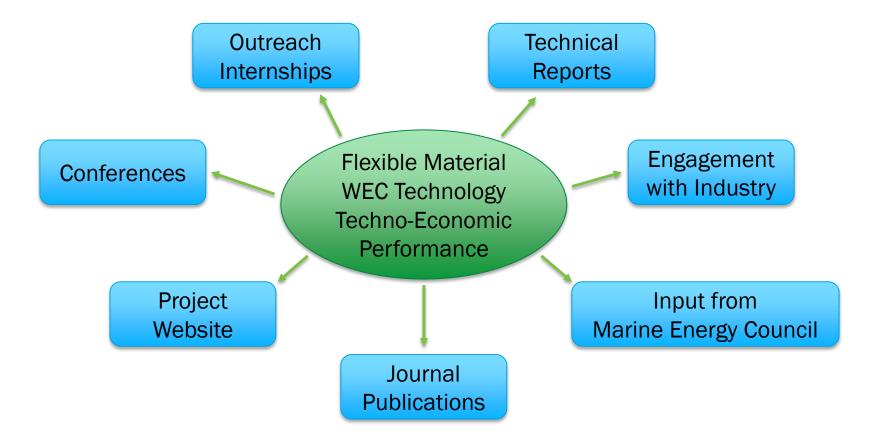
ENERGY Energy Efficiency & Renewable Energy

Management Approach

External Scientific Advisors: Centrale Nantes, Wave Venture,

Plymouth University

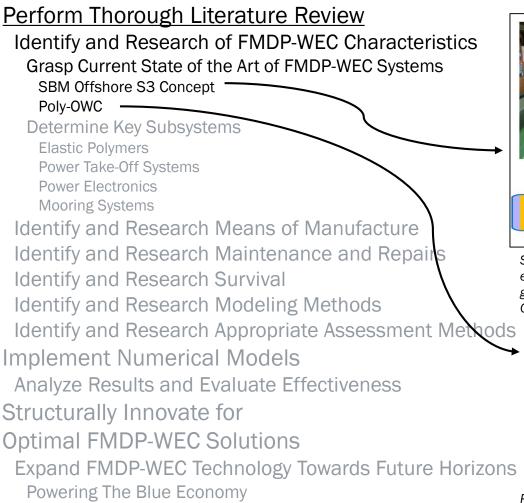
Regular Update Meetings with Department of Energy

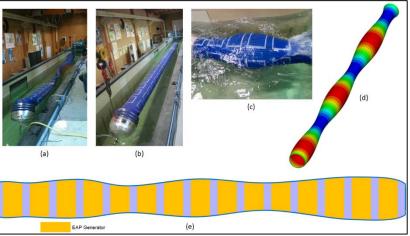

Input from Marine Energy Council

Incorporating Industry, Known FMDP-WEC Developer SBM Offshore

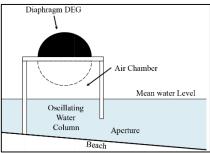
Inclusion of Technology Performance Level Assessments with Structured Innovation

End-User Engagement and Dissemination Strategy

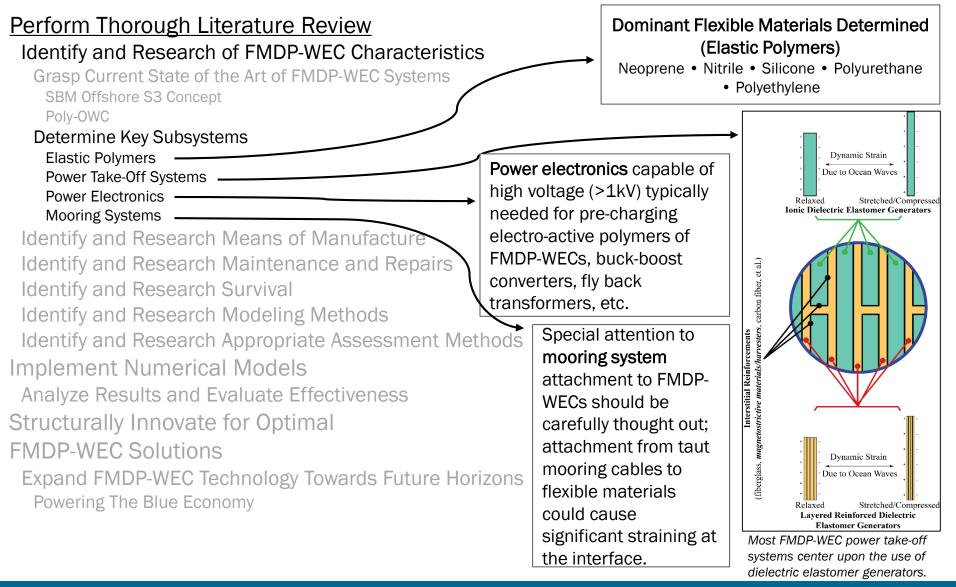

U.S. DEPARTMENT OF



Technical Accomplishments


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


SBM Offshore's S3 Concept; a FMDP-WEC whose radial expanding/contracting tube structure uses electro-active polymers to generate electricity from ocean waves.^[1] (Images/Illustrations by SBM Offshore.)

Polymeric's Wave Energy Converter Concept; a FMDP-WEC whose bubble-like stretching diaphragm of dielectric elastomer generators bulges back and forth due to an oscillating water column.^[2] (Images/Illustrations public domain via EU's CORDIS program.)

U.S. DEPARTMENT OF

U.S. DEPARTMENT OF

Perform Thorough Literature Review Identify and Research of FMDP-WEC Characteristics Grasp Current State of the Art of FMDP-WEC Systems SBM Offshore S3 Concept Poly-OWC Determine Key Subsystems Elastic Polymers Power Take-off Systems Power Electronics Mooring Systems Identify and Research Means of Manufacture	Major FMDP-WEC components could be produced using already existent synthetic rubber manufacturing techniques. The general means of FMDP-WECs manufacture, therefore, is straightforward and compact.	As with other elastomer-based technologies, FMDP- WECs need minimal maintenance as they have no gears, no electromechanical generators, no hydraulic lines/systems, etc.
Identify and Research Maintenance and Repairs Identify and Research Survival Identify and Research Modeling Methods Identify and Research Appropriate Assessment Meth Implement Numerical Models	Likewise for repairs , most malfunction can be fixed by gluing a replacement PTO or patch.	
Analyze Results and Evaluate Effectiveness Structurally Innovate for Optimal FMDP-WEC Solutions Expand FMDP-WEC Technology Towards Future Horiz Powering The Blue Economy	ons By there nature, FMDP-WE to survive most large sease floating FMDP-WEC ballast Offshore's S3 concept) the their ballasts, scuttle them storm beneath the waves.	states. Indeed, for ted by air (e.g., SBM ey could simply breach

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Journal of Fluids and Structures 74 (2017) 356-384 Perform Thorough Literature Review Contents lists available at ScienceDirect Journal of Fluids and Structures Identify and Research of FMDP-WEC Characteristics journal homepage: www.elsevier.com/locate/jfs Grasp Current State of the Art of FMDP-WEC Systems SBM Offshore S3 Concept A linear numerical model for analysing the hydroelastic response of a flexible electroactive wave energy converter Poly-OWC Aurélien Babarit^{a,*}, Jitendra Singh^{a,1}, Cécile Mélis^b, Ambroise Wattez^b, **Determine Key Subsystems** Philippe Jean^b Ecole Centrale de Nantes - CNRS, 1 rue de la Noe, 44300 Nantes, France **Elastic Polymers** SBM Offshore, 24 avenue de Fontvieille, MC98007, Monace Power Take-Off Systems An effective source of information regarding the analysis of FMDP-**Power Electronics** WECs: Babarit's take on analytic models tubular FMDP-WECs.^[3] **Mooring Systems** WAMIT[®] Identify and Research Means of Manufacture Identify and Research Maintenance and Repairs USER MANUAL Identify and Research Survival and Recovery GENERALIZED BODY MODES Identify and Research Modeling Methods (NEWMDS>0) Identify and Research Appropriate Assessment Methods A fruitful software tool to analyze ocean wave interactions with FMDP-WECs, especially in Implement Numerical Models the sense of generalized/flexible body modes of motion.^[4] Analyze Results and Evaluate Effectiveness Structurally Innovate for Optimal FMDP-WEC Solutions Expand FMDP-WEC Technology Towards Future Horizons SANDIA REPORT SAND2017-4471 Unlimited Release Powering The Blue Economy April 2017 Technology Performance Level Assessment Methodology

A means to assess the overall performance of FMDP-WECs; TPL Assessment Methodology.^[5]

Version 3.01

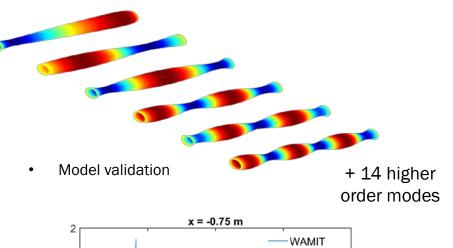
U.S. DEPARTMENT OF

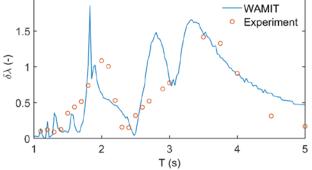
Energy Efficiency & Renewable Energy

- Perform Thorough Literature Review Identify and Research of FMDP-WEC Characteristics Grasp Current State of the Art of FMDP-WEC Systems SBM Offshore S3 Concept Poly-OWC Determine Key Sub-Systems
 - Elastic Polymers
 - Power Take-off Systems
 - Power Electronics
 - Mooring Systems
- Identify and Research Means of Manufacture Identify and Research Maintenance and Repairs Identify and Research Survival and Recovery Identify and Research Modeling Methods Identify and Research Appropriate Assessment Methods

Implement Numerical Models

Analyze Results and Evaluate Effectiveness

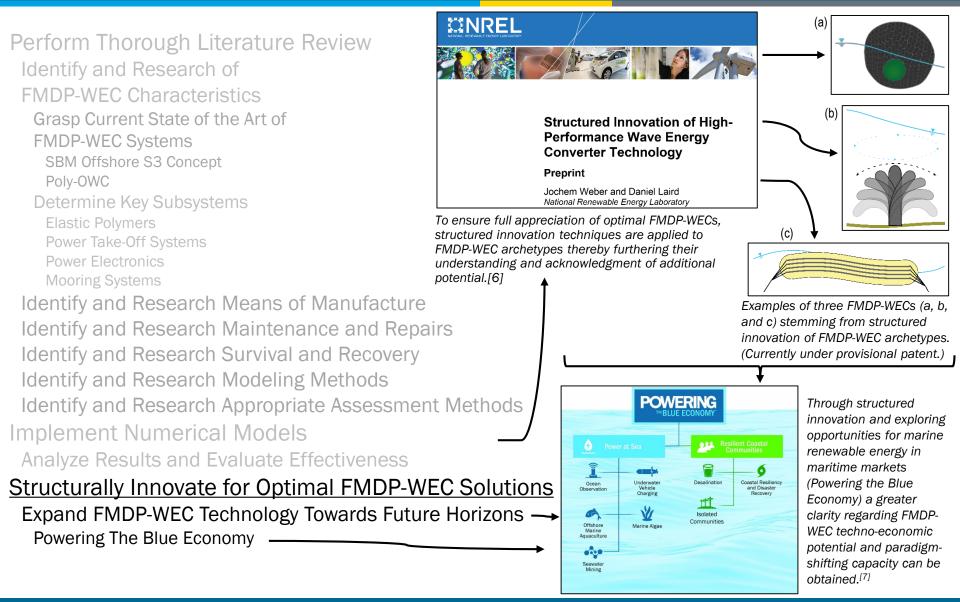

Structurally Innovate for Optimal


FMDP-WEC Solutions

- Expand FMDP-WEC Technology Towards
- Future Horizons
 - Powering The Blue Economy

WAMIT Model

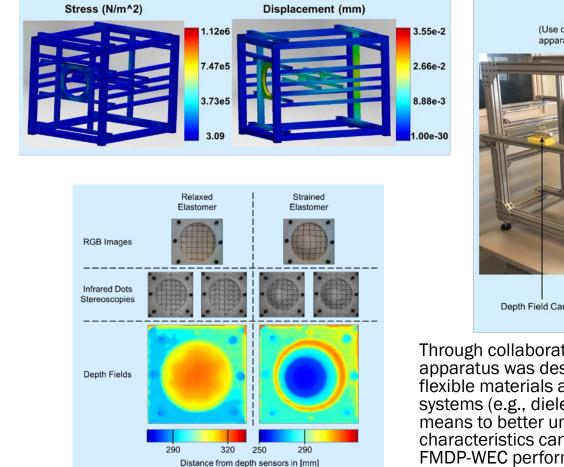
20 generalized body mode shapes

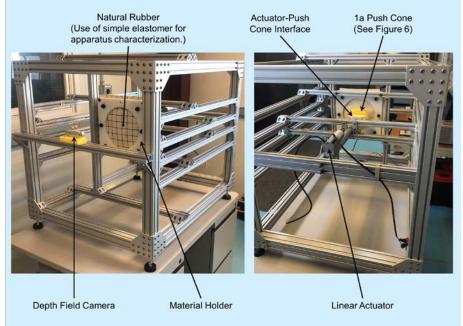

WEC-Sim Model

- Code changes have been validated with analytic solutions.
- The flexible tube model is still in development.

STAR-CCM+ Model

The flexible tube model is still in development.


U.S. DEPARTMENT OF



Progress Since Project Summary Submittal

STEM Outreach for Development of Apparatus for Evaluation of FMDP-WEC Components

Science, Technology, Engineering, and Mathematics: Energy Efficiency & Renewable Energy Robotics Internship Program

Through collaboration with a EERE Robotics Intern, an apparatus was designed and developed for the evaluation of flexible materials and their corresponding stretchable PTO systems (e.g., dielectric elastomer generators). In this way, a means to better understand general FMDP-WEC characteristics can be leveraged for greater techno-economic FMDP-WEC performance analysis.

- Further isolate and report upon major FMDP-WEC costperformance drivers.
- Perform further numerical models of FMDP-WEC technology.
- Establish solid pathway towards the amalgamation of FMDP-WEC technology with Powering the Blue Economy. (Giving focus with a view towards FMDP-WEC technology powering navigation buoys, autonomous underwater vehicles, aquaculture, etc.)
- Shakedown/calibrate evaluation apparatus for FMDP-WEC elastomers and corresponding stretchable PTO systems.
- Develop project website.
- Prepare journal articles related to project approach and outcomes.

References

- [1] SBM Offshore. 2016, "Wave Energy Converter Concept Development", <u>https://www.sbmoffshore.com/wp-content/uploads/2016/06/Technology-Wave-Energy-Converter-FINAL-LOW-RESOLUTION.pdf</u>
- [2] Polymeric & CORDIS. 2017, "POLYWEC (New mechanisms and concepts for exploiting electroactive Polymers for Wave Energy Conversion.)", <u>https://cordis.europa.eu/project/rcn/105863/reporting/en</u>
- [3] Babarit, A. 2017, "A linear numerical model for analyzing the hydroelastic response of a flexible electroactive wave energy converter", Journal of Fluids and Structures; Vol. 74, Pgs. 356-384.
- [4] WAMIT. 2017, "WAMIT User Manual Version 7.3", http://www.wamit.com/manualupdate/v73_manual.pdf
- [5] Bull, B. & et al. 2017, "Technology Performance Level Assessment Methodology", Sandia Report, Sandia National Laboratory; SAND2017-4471.
- [6] Weber, J. 2018, "Structured Innovation of High-Performance Wave Energy Converter Technology", NREL Report, National Renewable Energy Laboratory; NREL/CP-5000-64744
- [7] U.S. Department of Energy. 2019, "Powering the Blue Economy", <u>https://www.energy.gov/eere/water/powering-blue-economy-exploring-opportunities-marine-renewable-energy-maritime-markets</u>