#### Water Power Technologies Office 2019 Peer Review



Energy Efficiency & Renewable Energy



### **3<sup>rd</sup> Generation Adaptable Monitoring Package**

#### DE-EE0007827

**Marine and Hydrokinetics Program** 

October 9, 2019

**Brian Polagye** 

University of Washington

## **Project Overview**

| Project Summary                                                                                                                                                                                                                                                                                                                                                                                                 | Project Information                                                                                                 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| The 3G-AMP combines real-time, machine learning                                                                                                                                                                                                                                                                                                                                                                 | Project Principal Investigator(s)                                                                                   |  |
| algorithms with modular hardware to characterize marine<br>animal activity at marine energy sites accurately, at low cost,<br>and without biasing animal behavior.                                                                                                                                                                                                                                              | <ul> <li>Brian Polagye</li> <li>Andy Stewart (<i>departing</i>)</li> <li>Chris Bassett (<i>incoming</i>)</li> </ul> |  |
| Real-time information about animal activity can close the                                                                                                                                                                                                                                                                                                                                                       | WPTO Lead                                                                                                           |  |
| retirement.                                                                                                                                                                                                                                                                                                                                                                                                     | Samantha Eaves                                                                                                      |  |
| Project Objective & Impact                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |  |
| Problem: Low-probability, high-consequence                                                                                                                                                                                                                                                                                                                                                                      | Project Partners/Subs                                                                                               |  |
| <ul> <li>environmental interactions (e.g., collision) cannot be retired by continuously archiving sensor data.</li> <li>Objective: Continuously observe marine environment and process data in real-time using machine learning to rapidly characterize animal activity.</li> <li>Impact: Prove the effectiveness and flexibility of the AMP architecture to reduce barriers to commercial adoption.</li> </ul> | <ul> <li>MarineSitu, Inc.</li> <li>NOAA NMFS AK Fisheries<br/>Science Center</li> </ul>                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | Project Duration                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>December 2016</li> <li>November 2019 (pending extension)</li> </ul>                                        |  |

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

## Marine and Hydrokinetics (MHK) Program Strategic Approaches

### **Data Sharing and Analysis**

### Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing

## **Alignment with the MHK Program**

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

#### **Reducing Barriers to Testing**

- Enable access to world-class testing facilities that help accelerate the pace of technology development
- Work with agencies and other groups to ensure that existing data is wellutilized and identify potential improvements to regulatory processes and requirements
- Support additional scientific research as needed, focused on retiring or mitigating environmental risks and reducing costs and complexity of environmental monitoring
- Engage in relevant coastal planning processes to ensure that MHK development interests are equitably considered

The 3G-AMP's modular, endurancetested design expands monitoring capabilities while reducing monitoring complexity.

| Total Project Budget – Award Information |                |         |  |  |
|------------------------------------------|----------------|---------|--|--|
| DOE Cost-share                           |                | Total   |  |  |
| \$1397k                                  | <b>\$158</b> k | \$1555k |  |  |

| FY17           | FY18   | FY19<br>(Q1 & Q2 Only) | Total Actual Costs<br>FY17–FY19 Q1 & Q2<br>(October 2016 –<br>March 2019) |
|----------------|--------|------------------------|---------------------------------------------------------------------------|
| Costed         | Costed | Costed                 | Total                                                                     |
| <b>\$148</b> k | \$649k | \$231k                 | \$1028k                                                                   |

- Project benefited from concurrent activities associated with:
  - Development of illumination system for fish reaction study (NOAA)
  - Fabrication of an AMP for WETS (DOD NAVFAC) powered by a WEC
  - Data streams from AMP deployment at WETS (DOE iAMP)
  - Graduate student support (NSF Graduate Research Fellowship)

# Management and Technical Approach

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



6 | Water Power Technologies Office

U.S. DEPARTMENT OF

#### Planned



#### **Actual**



# Management and Technical Approach

ENERGY Energy Efficiency & Renewable Energy

#### Success Factors

- Technical: Demonstrated reliability and flexibility
- *Market*: Demonstrated ability to retire risk
- Business: Commercially-viable entity offering AMP services

### Challenges

- Marine energy market size: Limited number of deployments large enough to warrant AMP-scale environmental monitoring
- Cost perception: AMP backbone costs equivalent to a single sensor (e.g., multibeam sonar), but end-users perceive high system cost
- Replacement perception: Potential end-users underestimate the cost and complexity of hardware and software integration (perception that DIY is cheap and easy)

# End-User Engagement and Dissemination Strategy



#### Industry Interviews – BP1

| Wave Energy                                                                                                | Current Energy                                                                                                  | Test Facilities                                  | Supporting                                                                              |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|
| Device Developers                                                                                          | Developers                                                                                                      |                                                  | Organizations                                                                           |
| <ul> <li>Oscilla Power</li> <li>Columbia<br/>Power</li> <li>NWEI</li> <li>Ocean Energy<br/>Ltd.</li> </ul> | <ul> <li>ORPC</li> <li>Verdant Power</li> <li>OpenHydro</li> <li>MeyGen</li> <li>Instream<br/>Energy</li> </ul> | <ul><li>PMEC</li><li>WETS</li><li>EMEC</li></ul> | <ul> <li>UMaine</li> <li>SMRU<br/>consulting</li> <li>PNNL</li> <li>Aquatera</li> </ul> |

- Need for demonstrations at fully energetic sites
- Specific monitoring requirements for each project
- Data visualization and acceptance



- ORPC contract for camera system software development
- FORCE Pathway Project contract for imaging sonar review

## End-User Engagement and Dissemination Strategy

#### Presentations

- OES Collision Workshop
- EIMR conference
- METS conference

### Publications

- Cotter et al. (2019) Acoustic characterization of sensors used for marine environmental monitoring
- Cotter and Polagye (*in review*) -Automatic classification of biological targets in a tidal channel using a multibeam sonar



U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Q

#### Created playlists



#### **Public Dissemination**



Energy Efficiency & Renewable Energy

#### **AMP Architecture Overview**



U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

#### Jan. 16 - Deployment

**Jan. 22** Umbilical damage

Jan. 29 Recovery Umbilical replacement Redeployment

> 174 days 97% uptime



#### May 28 - Recovery

U.S. DEPARTMENT OF



U.S. DEPARTMENT OF



U.S. DEPARTMENT OF



U.S. DEPARTMENT OF ENERGY



U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



**Biological vs. Non-biological Target** 

### Progress Since Project Summary Submittal

U.S. DEPARTMENT OF

- Comparison of imaging sonars: Teledyne BlueView (2250 kHz) and Tritech Gemini (720 kHz)
  - Easier for human reviewer to identify targets in BlueView
  - More targets detectable in Gemini
  - Similar automatic classification capabilities for detected targets
- Go/No-Go decision for Budget Period 3
  - Meeting on August 20





U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

• Budget Period 3: WETS Deployment on OE 35 WEC

