Water Power Technologies Office 2019 Peer Review

R&D to Support Modernization, Upgrades, and Security for Existing Hydropower Fleet

Hydropower Program

Thursday, October 10, 2019

Dr. Mark Christian

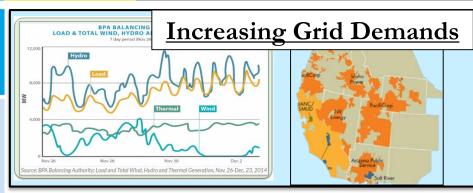
Argonne National Lab

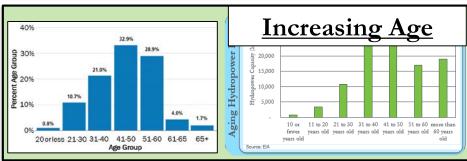
Water Power Technologies Office

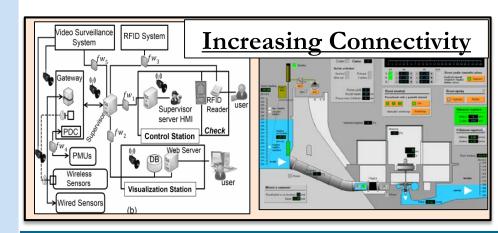
Alignment with the Program

Hydropower Program Strategic Priorities

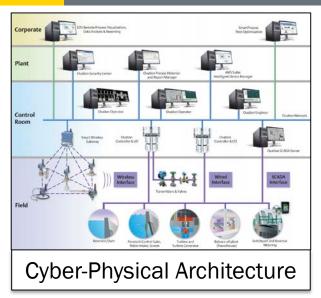
Environmental R&D and Hydrologic Systems Science

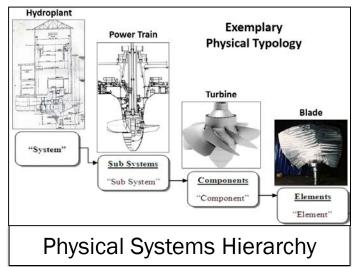

Big-Data Access and Management


Technology R&D for Low-Impact Hydropower Growth R&D to Support
Modernization,
Upgrades and Security
for Existing Hydropower
Fleet


Understand, Enable, and Improve Hydropower's Contributions to Grid Reliability, Resilience, and Integration

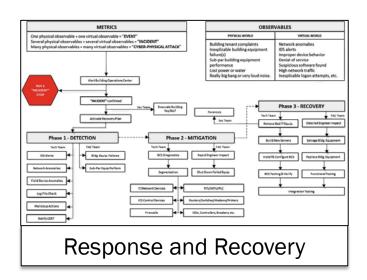
- Introduction of new technologies and upgrades of the existing fleet occur over long time periods given longevity of assets
- Hydropower facilities are extremely different from one another, with wide ranges of operational and physical characteristics and limited information availability
- Hydropower and PSH plants are increasingly connected to information technology systems which heighten cybersecurity risks
- Effective application of digitization requires a heretofore unestablished "right sized" focus on information and analytics



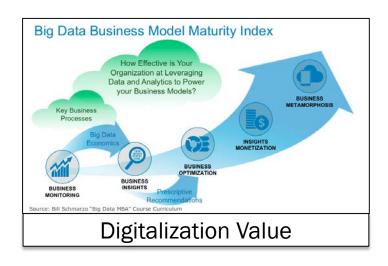


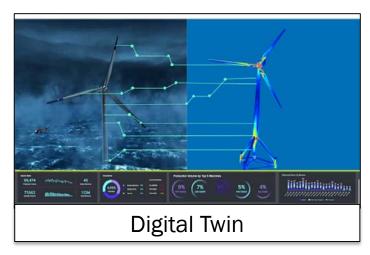
- Create mechanisms to classify diverse hydropower plants by mechanical and cyberphysical systems, providing better characterization of the fleet and allowing identification of exemplary facilities / practices
- Advanced instrumentation and data evaluation to improve equipment longevity and condition based repair
- Creation of cybersecurity tools and studies which help enhance the security of critical dam infrastructure by articulating the cybersecurity target, risk and recovery landscape
- Develop cross-cutting digitalization systems and advanced sensor suites to empower data driven decisions on O&M and asset management

- Create mechanisms to classify diverse
 hydropower plants by mechanical and cyberphysical systems, providing better
 characterization of the fleet and allowing
 identification of exemplary facilities /
 practices
- Advanced instrumentation and data evaluation to improve equipment longevity and condition based repair
- Creation of cybersecurity tools and studies which help enhance the security of critical dam infrastructure by articulating the cybersecurity target, risk and recovery landscape
- Develop cross-cutting digitalization systems and advanced sensor suites to empower data driven decisions on O&M and asset management


Novel Sensors

Hydro Fleet Intelligence


- Create mechanisms to classify diverse
 hydropower plants by mechanical and cyberphysical systems, providing better
 characterization of the fleet and allowing
 identification of exemplary facilities /
 practices
- Advanced instrumentation and data evaluation to improve equipment longevity and condition based repair
- Creation of cybersecurity tools and studies which help enhance the security of critical dam infrastructure by articulating the cybersecurity target, risk and recovery landscape
- Develop cross-cutting digitalization systems and advanced sensor suites to empower data driven decisions on O&M and asset management



- Create mechanisms to classify diverse
 hydropower plants by mechanical and cyberphysical systems, providing better
 characterization of the fleet and allowing
 identification of exemplary facilities /
 practices
- Advanced instrumentation and data evaluation to improve equipment longevity and condition based repair
- Creation of cybersecurity tools and studies which help enhance the security of critical dam infrastructure by articulating the cybersecurity target, risk and recovery landscape
- Develop cross-cutting digitalization systems and advanced sensor suites to empower data driven decisions on O&M and asset management

Track 1: Thursday, October 10th

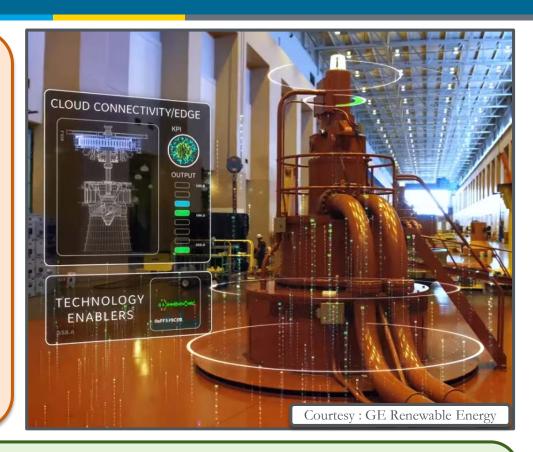
Start	End	Agenda Session		Presenter	Affiliation	Track	Room
1:15 PM	1:35 PM	Overview of R&D to Support Modernization, Upgrades and Security for Existing Hydropower Fle	eet	Mark Christian	WPTO	New Tech+Mod	Washington /Jefferson
1:35 PM	2:05 PM	ydro Fleet Database Development nd Analyses (Hydro Source)		Brennan Smith	ORNL	New Tech+Mod	Washington /Jefferson
2:05 PM	2:35 PM	Low-Head, Short-Intake Flow Measurement Research		Sam Harding	PNNL	New Tech+Mod	Washington /Jefferson
2:35 PM	3:05 PM	lydropower Fleet Intelligence		Stephen Signore	ORNL	New Tech+Mod	Washington /Jefferson
3:05 PM	3:15 PM	End-of-Session Networking Activity		All recent presenters	All recent presenters	New Tech+Mod	Washington /Jefferson
3:15 PM	3:35 PM	WPTO's Closing Words from the New Tech+Mod Panel	N	Marisol Bonnet	WPTO	New Tech+Mod	Washington /Jefferson
3:35 PM	3:45 PM	Coffee Break and Transition					
3:45 PM	5:30 PM	Town Hall	Multiple		Multiple	Plenary	Grand Ballroom
5:30 PM	6:00 PM	Peer Reviewer Only Meetings (all hydro reviewers)					Madison

Program Portfolio

Cybersecurity:

- Congressional
 Appropriation requiring
 EERE submit a "multiyear program plan" to
 "bring cybersecurity
 into early stage R&D"
- Focus on articulating the State of the fleet

Key Takeaways:


- The cybersecurity landscape is non-uniform and changing more rapidly than hydro fleet assets.
- Hydroplants have unique operational attributes, legacy characteristics and failure mechanisms.
- Effective and "Right-Sized" guidance is key for effective cybersecurity implementation by industry

Program Portfolio

Digitalization:

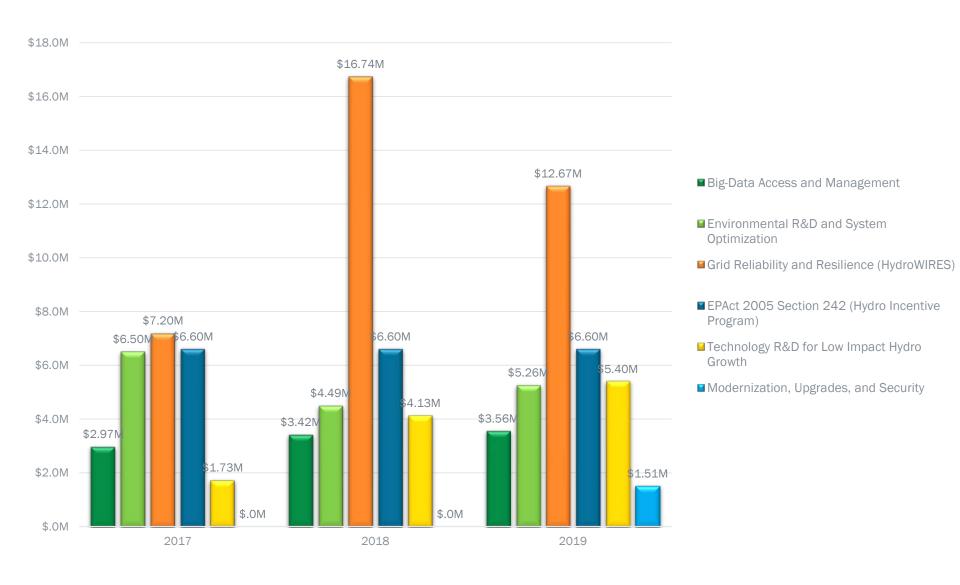
- Digital transformation can provide hydro plants with the information and actionable capabilities necessary to operate in the modern electrical and water system.
- Value sensitivity and articulation is critical to effort success

Key Takeaways:

- Understanding the current state of the art/fleet is critical to effective focus of research efforts.
- Hydroplants have unique operational attributes, legacy characteristics and system requirements that digital technologies can help empower but must be efficiently tailored to ensure an economic and valuable role.

Program Portfolio

Maintenance:


- Process to ensure asset performance, reliability and safety.
- Maintenance operations are a combination of site specific requirements as well as risk mitigation efforts.
- Significant history of industry activity

Key Takeaways:

- Hydroplants are performing unlike they have in the past, and there are potentially significant maintenance and cost implications that are not explored.
- Quality data is foundational to making effective decisions but it is not enough!
 Standardized processes must be put in place to make sure the data is used properly.

Program Management Approach

Program Management Approach

Hydro Fleet Intelligence:

- HydroAMP Data Assessment: Q3 FY18
- Engagement with PG&E: Q3 FY19
- Flexible Impacts Data Analysis: Q4 FY19

Flow Measurement:

- ADCP Flume Testing: Q1 of FY19
- Flow Meter Field Testing: Q4 of FY19

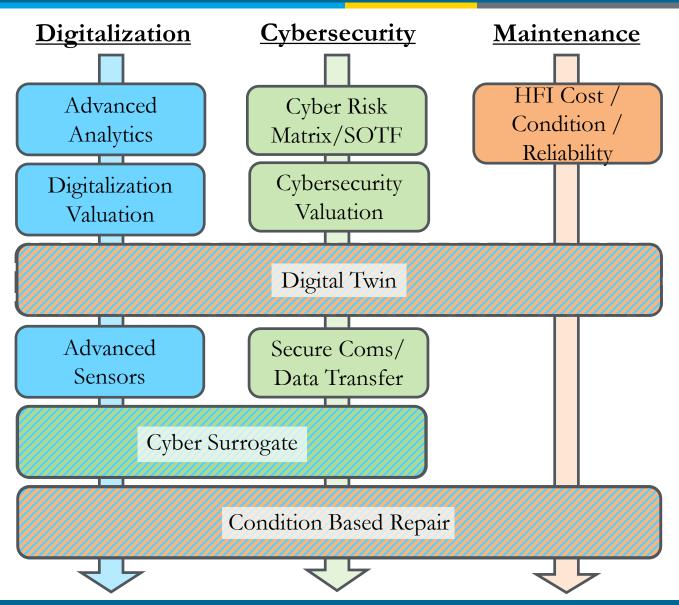
Cybersecurity:

- Response & Recovery Funded: Q4 of FY19
- Cyber-Physical Topologies Funded: Q4 of FY19

Stakeholder Engagement, Outreach, and Dissemination

Stakeholder Input Incorporated:

- Industry Working Groups: EUCG, HydroAMP, IPSIG, HPLIG
- Standards Committees: ASME PTC-18
- Owner Operators: USACE, USBR, PG&E
- Other Agencies: NERC, DHS, NIST, USACE, USBR


Dissemination of Information:

- Project Development (Two Way Communication!)
- Industry Workshops and Forums
- Conferences

Key Partnerships:

- PG&E: Hydropower Fleet Intelligence
- US Armey Corps of Engineers: Field Testing of Flow Measurement Devices

Future Work

