Demonstration of the Ocean Energy (OE) Buoy at US Navy’s Wave Energy Test Site

CID -EE0006924

Marine and Hydrokinetics Program

Wednesday 9th October 2019

Principal Investigator
Prof. Tony Lewis CTO
Organization
Ocean Energy USA LLC.
The Ocean Energy (OE) Buoy is based on the floating oscillating water column which uses variability in wave height to move air through an air turbine. The turbine rotates in a single direction using high-speed air flow to generate electricity. The OE Buoy has previously been tested at 1/4 scale in real sea conditions for over 3 years. The 500kW system will be demonstrated for 12 months at near full-scale at the US Navy’s Wave Energy Test Site (WETS), Hawaii.
The key project objectives are to:

- Perform the detailed engineering
- Fabricate and test OE35 wave energy converter including Hydro-Air Turbine
- The end-product is a grid connected, large-scale, OE 35m Buoy fitted with a 500kW Siemens Government Technologies Hydro-Air turbine power take-off and electrical generation system
- Deploy & test a near full-scale deep-water floating Wave Energy Converter (WEC) at WETS to collect useful data to inform the larger MHK industry

This project will demonstrate a grid connected near full-scale WECs can be constructed using the existing supply chain in the USA.

- This machine will be the largest WEC deployed and grid connected to date in the USA and one of the largest worldwide thus demonstrating the significant progress of the USA in the Global MHK sector.
- The overall test results will confirm the commercial viability of the OE Buoy technology at a large scale and provide confidence for commercialization efforts.
- The estimated annual average pneumatic power output of 131kW and a power take-off efficiency of 70%.

The goal for this project is to collect 12 months of data from testing a near full-scale device.
Alignment with the Program

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

- Foundational and Crosscutting R&D
- Technology-Specific Design and Validation
- Reducing Barriers to Testing
Alignment with the MHK Program

Technology-Specific Design and Validation (1)

Conduct in-water tests of near full-scale prototypes to validate performance and reliability of systems

- Demonstrate the OE buoy technology which has been validated, tested, and benchmarked against other MHK devices and has proven to be competitive with other WEC devices under development.
- Ocean Energy USA is collaborating with major industrial and research partners for construction, deployment, testing, and operations.
- The project will significantly improve stakeholder confidence in the wave energy sector in the USA.

Improve methods for safe and cost-efficient installation, grid integration, operations, monitoring, maintenance, and decommissioning of MHK technologies

Testing a near full-scale device at WETS will:

- Demonstrate safe installation, grid integration, and operations through detailed planning
- Result in significant learnings from Operation and Maintenance (O&M) for a 12-month deployment period encompassing a full range of sea state conditions at the WETS will reduce risk,
- Facilitate the collection of useful data from extensive instrumentation for O&M and effective monitoring of WEC devices.
- Improve methodology reduce risk based on experience with deployment and decommissioning.
Support the development and adoption of international standards for device performance and insurance certification

- The monitoring system installed on the WEC is fully compliant with the requirements of the IEC Technical Specifications for Marine Renewable Energy Systems.
 - The data produced will allow provision of useful feedback for continual updating of these Specifications.
- The successful implementation of insurance coverage for the delivery and deployment of the WEC at the WETS site represents significant advancement of MHK technologies.
 - Approvals by a Marine Warranty Surveyor (MWS) will contribute to insurance certification for future MHK devices.
Project Budget

Total Project Budget – Award Information

<table>
<thead>
<tr>
<th>DOE</th>
<th>Cost-share</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10,572k</td>
<td>$5,934k</td>
<td>$16,506k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FY17</th>
<th>FY18</th>
<th>FY19 (Q1 & Q2 Only)</th>
<th>Total Actual Costs FY17–FY19 Q1 & Q2 (October 2016 – March 2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costed</td>
<td>Costed</td>
<td>Costed</td>
<td>Total</td>
</tr>
<tr>
<td>$3,357k</td>
<td>$3,489k</td>
<td>$1,743k</td>
<td>$8,589k</td>
</tr>
</tbody>
</table>

- The initial project plan was modified to incorporate required changes as the Project evolved and to facilitate a further deployment at larger capacity.

- Cost share support provided by the Irish Government through the Sustainable Energy Authority of Ireland (SEAI).
Management and Technical Approach (1)

The components of the project program cover the wide range of technical issues that are required for the successful delivery of this project. These include:

- Permitting
- Final design of OE35 Structure / Interface to SGT Hydro-Air Turbine
- Fabrication, Fitting out and Commissioning of OE35
- Moorings and Umbilical Systems Design and Fabrication
- Deployment & Installation Planning
- Operations, Monitoring and Maintenance Planning
- Deployment for 1 year at the US Navy Wave Energy Test Site, Kaneohe Bay, Oahu, Hawaii
- Data Analysis and IEC Compliance
Management and Technical Approach (2)

- The metrics used to measure progress will be based on the success of the different phases of the projects – device design, device fabrication and fit-out, deployment at the WETS site, operations for 12 months at the site, data analysis and transfer to the MHK Data Repository.

- The economic and technical metrics to be used in assessing the success at the conclusion of the project will be as follows

 - State of the art probabilistic assessment of the LCOE for the OE Buoy technology will be undertaken based on the learnings from the project operation and the data outcomes;
 - Comprehensive bottom-up review of the performance projections for the OE Buoy undertaken at the conclusion of the project based on the recorded performance data.
 - Advanced understanding of the cost drivers for the technology of this project will follow from detailed engagement with the supply chain during the project
End-User Engagement and Dissemination Strategy

• The dissemination of the project results to date has been through presentations at industry focused Conferences both in US and Europe.

• Presentations were made at MRIA in Dublin February 2017, 2018 and 2019, ICOE in Cherbourg in May 2018 & Ocean Energy Europe Industry Days in Brussels in March 2019.

• Future results will continue to be disseminated through International Conferences as well as through publications in Peer Reviewed Journals.
Technical Accomplishments (1)

- A suitable steel shipyard fabricator was identified – Vigor, Portland and a contract agreed for the construction of the OE35 device hull. The fabrication of the OE35 hull has been completed.
Technical Accomplishments (2)

- The Hydro-Air turbine has been fabricated and fitted by SGT. The electrical power control and power quality conditioning system has been designed and installed by SGT to conform to the HECO grid compatibility requirements.
Technical Accomplishments (2)

- The design and fit-out of all ancillary systems – safety and alarm system, System Control and Data Acquisition (SCADA) System and the instrumentation suite electrical grid interface including 11.5kV transformer and disconnect, fiber data system for transmission of data to shore, has been completed and tested.

- The overall system has been End to End tested by simulating the WETS grid connection and operation and full commissioning has been completed by motoring the turbine and supplying 11.5kV through the umbilical deck cable.

- The system is now ready for load out and tow to Hawaii.

- The umbilical cable design has been completed and the umbilical has been shipped to Hawaii in advance of installation at the WETS site. The mooring system at WETS has been upgraded by the US Navy and the mooring hawser ropes for the OE35 have been procured and delivered to Hawaii.
Progress Since Project Summary Submittal

- The OE35 device - fully commissioned by 9th October
- The OE35 device was loaded out & launched on 29th September
- The device will be on tow to Hawaii on 15th October
- \url{https://youtu.be/ZqNu69B6Sus}
Future Work

<table>
<thead>
<tr>
<th>Task</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tow to Pearl Harbor Hawaii</td>
<td>15<sup>th</sup> Oct. 2019</td>
</tr>
<tr>
<td>Device preparation for deployment at WETS</td>
<td>10 - 15<sup>th</sup> Nov. 2019</td>
</tr>
<tr>
<td>Device deployment at WETS (weather dependent)</td>
<td>16 - 19<sup>th</sup> Nov. 2019</td>
</tr>
<tr>
<td>Operational at WETS</td>
<td>20<sup>th</sup> Nov. 2019 – 19<sup>th</sup> Nov. 2020</td>
</tr>
<tr>
<td>Ongoing data collection</td>
<td>20<sup>th</sup> Nov. 2019 – 19<sup>th</sup> Nov. 2020</td>
</tr>
<tr>
<td>Live operational testing to optimize control</td>
<td>20<sup>th</sup> Nov. 2019 – 19<sup>th</sup> Feb. 2020</td>
</tr>
<tr>
<td>Autonomous operation</td>
<td>20<sup>th</sup> Feb. 2020 – 19<sup>th</sup> Nov. 2020</td>
</tr>
<tr>
<td>Device decommissioning</td>
<td>20<sup>th</sup> Nov. 2020</td>
</tr>
<tr>
<td>Data Analysis and Reporting</td>
<td>20<sup>th</sup> Nov. 2019 - 31<sup>st</sup> Mar. 2021</td>
</tr>
</tbody>
</table>
Prof. Tony Lewis
CTO
Ocean Energy USA LLC.

tl@oceanenergy.ie

http://www.oceanenergy.ie