
Water Power Technologies Office 2019 Peer Review

Energy Efficiency & Renewable Energy

Material Design Tools for MHK Composite Structures

WC0101000/(CPS) 25536

Marine and Hydrokinetics Program

October 8, 2019

Bernadette A Hernandez-Sanchez Sandia National Laboratories

Project Overview

ENERGY Energy Efficiency & Renewable Energy

Pr	oject Summary	Project Information			
•	Problem: MHK technologies manufactured with	Project Principal Investigator(s)			
•	composites are promising to increase efficiency and improve LCOE metrics; however, composites in marine energy applications are largely untested. Goal: is to reduce risk/uncertainty in using composite	Bernadette A. Hernandez-Sanchez (PI) SNL			
	designs by demonstrating their potential advantages.	WPTO Lead			
		Lauren Moraski			
Pr	oject Objective & Impact				
•	Objective: (1) assess coupons supplied by industry, (2)	Project Partners/Subs			
	identify relevant substructures for fabrication/testing with industry, and (3) provide a descriptive resource of materials properties and solutions to address priority needs (2015 Workshop).	Budi Gunawan, SNL George Bonheyo, PNNL Scott Hughes, NREL David Miller, MSU Francisco Presuel-Moreno, FAU			
•	Impact: reduce materials risk and overcome engineering challenges, inform supply chain industry about scale-up of suitable materials, accelerate manufacture, and assess performance/reliability.	Project Duration			
		Project Start Date: FY2017Project End Date: FY20/Q2			

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing

Alignment with the MHK Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Foundational and Crosscutting R&D

- Drive innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications
- Develop, improve, and validate numerical and experimental tools and methodologies needed to improve understanding of important fluidstructure interactions
- Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions
- Collaboratively develop and apply quantitative metrics to identify and advance technologies with high ultimate techno-economic potential for their market applications

- Understand MHK environmental/load effects on composite materials to provide industry guidance for future materials selection, manufacture, and design.
- Experimental design with MHK conditions were used to evaluate marine industry coatings.
- Produced new standardized biofouling characterization methods.
- Evaluated composite performance under seawater/simulated saltwater conditions for corrosion, biofouling, and load (IEC Technical Specification/Wave Energy Scotland).

Alignment with the MHK Program

U.S. DEPARTMENT OF

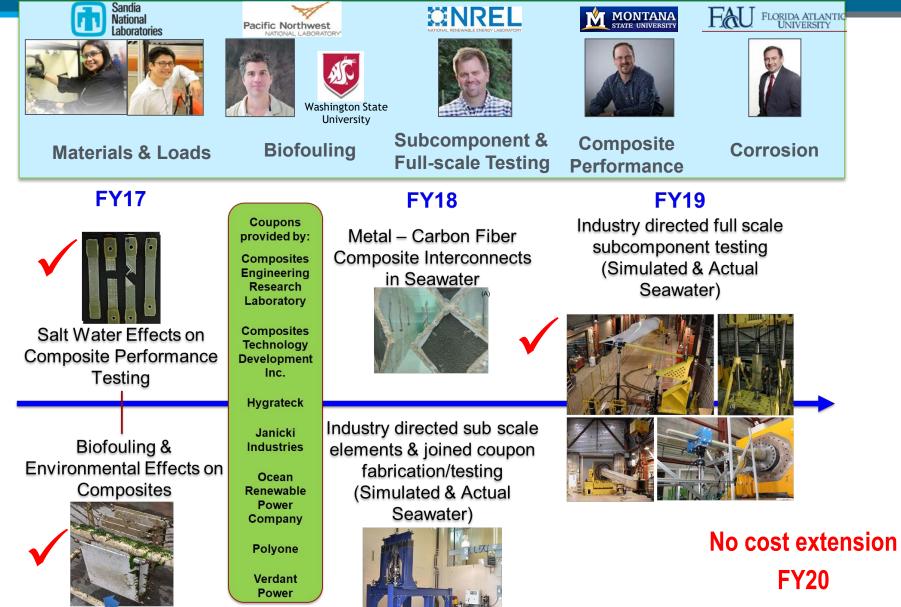
Energy Efficiency & Renewable Energy

Data Sharing and Analysis

- Provide original research to assess and communicate potential MHK market opportunities, including those relevant for other maritime markets
- Aggregate and analyze data on MHK performance and technology advances, and maintain information sharing platforms to enable dissemination
- Support the early incorporation of manufacturing considerations/information into design processes
- Leverage expertise, technology, data, methods, and lessons from the international MHK community and other offshore scientific and industrial sectors

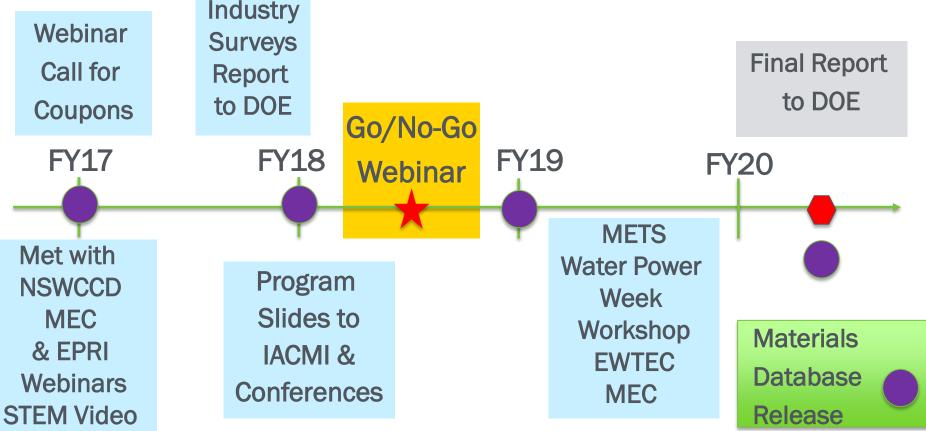
- Delivered U.S. DOE MHK Materials & Structures Database with metrics similar to the DOE Wind Materials & Structures Database (*open resource*) <u>http://energy.sandia.gov/energy/renew</u> <u>able-energy/water-power/technologydevelopment/advanced-materials/mhkmaterials-database/</u>
- Team engaged industry & stakeholders to identify needs.
- Provided outreach to share results and progress from experiments to gain feedback on approach/methods.

Project Budget


Lab	FY17	FY18	FY19 (Q1 & Q2 Only)		ect Budget ctober 2016 – March 2019)		
Lab	Costed	Costed	Costed	Total Costed	Total Authorized		
SNL	\$255K	\$319K	\$149K	\$629K	\$886K		
PNNL	\$134K	\$203K	\$135K	\$472K	\$639K		
NREL	\$18K	\$42K	\$33K	\$93K	\$341K		
TOTAL	\$407K	\$564K	\$317K	\$1,194K	\$1,866K		

- FY17 & 18 devoted budget to coupon testing (SNL, PNNL, MSU (\$100K), FAU (\$75K)) & industry surveys (NREL, Team) to identify subcomponents.
- FY19 delay in budget execution for subcontracts to MSU caused delay in subcomponent fabrication.
- To mitigate, a no cost extension was approved to finalize work through FY20/Q2.

Management and Technical Approach

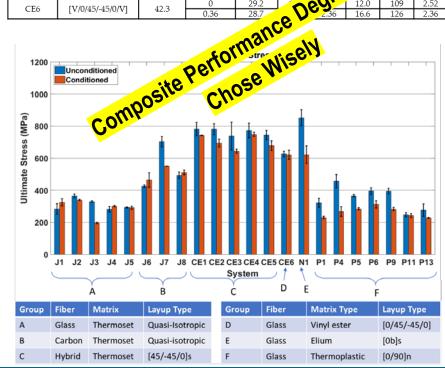

Energy Efficiency & Renewable Energy

End-User Engagement and Dissemination Strategy

Target Beneficiaries: MHK developers; composites stakeholders (e.g., supply chain, manufactures, Institute for Advanced Composites Manufacturing Innovation (IACMI)); WPTO to inform R&D strategy and Industry Integration Programs to advance technology performance levels (TPL)/technology readiness levels (TRL). Reduce Risk For Manufacture

Technical Accomplishments

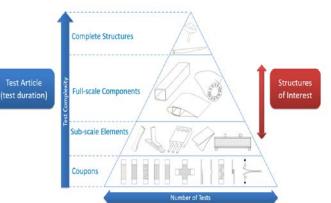
Energy Efficiency & Renewable Energy


- Performances testing on over 1000 Coupons
 - Submitted by MHK Industry & Stakeholders on materials of interest
- Biofouling Testing at PNNL
 - Unfiltered Seawater (MHK Conditions)
- Corrosion Studies at FAU
 - Carbon composite-metal (Interconnects)
- Delivered annual DOE Materials Database on properties for designers

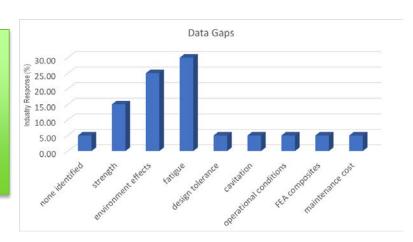
Biofouling study on commercial & research grade coatings & composites solate Metal Interconnoc From Carbon Compos From Carbon Composit Calcaerous deposit from corrosion study CF/VE8084 + anode

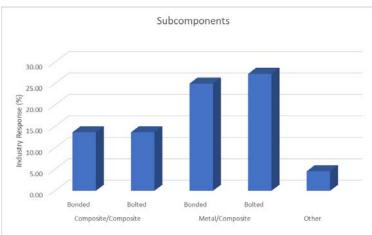
	MSU Material Layup	Average V _F for static tests %	% Moisture	Longitudinal Direction			Transverse Direction		
				E, GPa	UTS, MPa	% strain	E, GPa	UTS, MPa	% strain
CE1		40.9	0	56.1	786	1.38	10.7	98.3	3.17
CLI			1.2	58.3	787	1.33	8.54	68.3	1.84
CE2	CE2	35.8	0	54.8	773	1.40	9.02	83.3	3.26
CLZ			1.33	55.3	725	1.30	7.79	58.9	1.84
CE3		40.7	0	54.1	792	1.43	9.96	95.3	3.67
CES	[V/(+/-45)g/0c] _S		1.1	52.1	691	1.31	8.62	68	1.92
CE4		36.1	0	53.7	774	1.36	8.95	1 ^{3.9}	3.69
CE4		36.1	1.2	53.1	712	1.30	<u></u> (.5	1.82
CE5		36.4	0	56.5	733	1.36 1.30 15 2017 2017 2017	Ysr.	77.8	3.54
			0.34	57.9	695	-1°	J.05	63.6	2.05
CE6	[V/0/45/-45/0/V]	42.3	0	29.2		24.	12.0	109	2.52
CEO			0.36	28.7	N'	2.36	16.6	126	2.36

Composite Performance



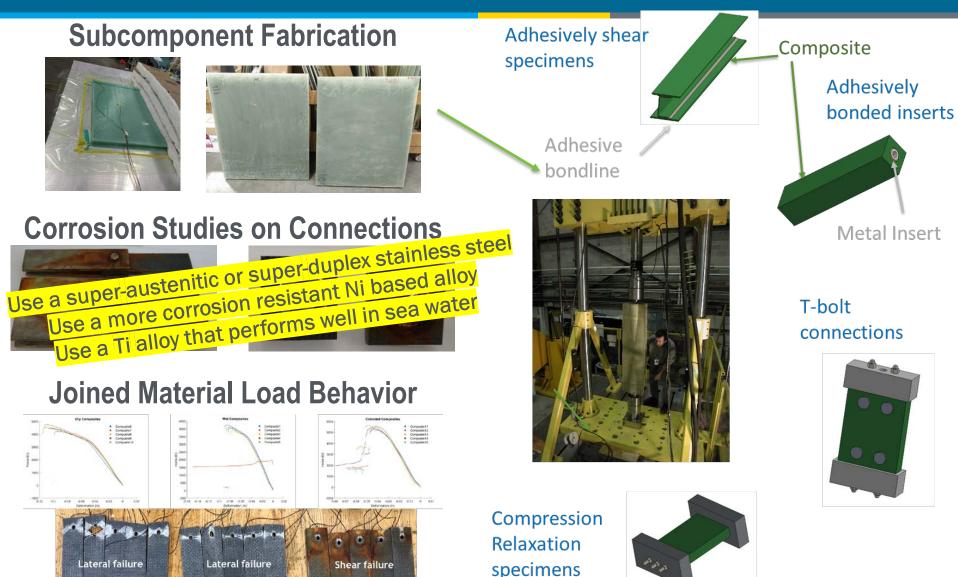
Technical Accomplishments (Cont.)


ENERGY Energy Efficiency & Renewable Energy


Public Results from Industry Surveys

- Questionnaire for industry input
- Phone interviews
- Identify:
 - What materials are being used?
 - Gaps in existing data
 - Design and manufacturing challenges
 - Components where composites may be used
- Results informed the development of subcomponent types
 (Internal Results)

(Internal Report) DOE WPTO: Industry Assessment on Composite Structures



Progress Since Project Summary Submittal

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Future Work

- FY20 Q1-Q2
- No Cost Extension
 - Seawater conditioning subcomponents at PNNL and FAU.
 - Testing pre-/postconditioned samples with FBG sensors in Q1.
 - Project will be finalized by testing at NREL in FY20 Q2.

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

- Results will demonstrate how subcomponents perform under load after exposure to seawater.
- Reduce risk: "What are the benefits of using composites?"