Water Power Technologies Office 2019 Peer Review

Energy Efficiency & Renewable Energy

Low-Head, Short-Intake Flow Measurement Research

WBS 1.1.1.601

Hydropower Program

October 10, 2019

Dr. Marshall Richmond Dr. Samuel Harding

Pacific Northwest National Laboratory

Project Overview

ENERGY Energy Efficiency & Renewable Energy

Project Summary	Project Information			
Accurate and cost-effective flow measurement (FM) in short	Project Principal Investigator(s)			
converging turbine intakes is a long-standing technical challenge.	Marshall Richmond			
• This project addresses these challenges through innovations in:	Samuel Harding			
\checkmark Advanced computational tools for engineering design				
 Analysis and implementation of absolute flow measurement technologies (bardware and software) 	WPTO Lead			
 technologies (hardware and software) ✓ Validation data sets from field tests and CFD. 	Mark Christian			
Project Objective & Impact				
	Project Partners/Subs			
 Advanced FM in short converging intakes using absolute flow measurement techniques, impacting: 	USACE Seattle – Chief Joseph Dam			
 Active monitoring and control for optimized power generation Long-term water-use efficiency 	USACE Hydroelectric Design Center (HDC)			
 Sustainable water management objectives 	Project Duration			
 Confirmation of performance obligations Kaplan units account for 54% of the turbines installed at new plants during 2007-2017 (Hydropower Market Report, 2018). 	Start: October 1, 2013End: September 30, 2019			

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Hydropower Program Strategic Priorities

Environmental R&D and Hydrologic Systems Science

Big-Data Access and Analysis

Technology R&D for Low-Impact Hydropower Growth R&D to Support Modernization, Upgrades and Security for Existing Hydropower Fleet Understand, Enable, and Improve Hydropower's Contributions to Grid Reliability, Resilience, and Integration

Alignment with the Hydro Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Understand, Enable, and Improve Hydropower's Contributions to Grid Reliability, Resilience, and Integration

- Understand the needs of the rapidly evolving grid and how they create opportunities for hydropower and PSH.
- Investigate the full range of hydropower's capabilities to provide grid services, as well as the machine, hydrologic, and institutional constraints to fully utilizing those capabilities.
- Optimize hydropower operations and planning—alongside other resources—to best utilize hydropower's capabilities to provide grid services.
- Invest in innovative technologies that improve hydropower capabilities to provide grid services

The project aligns with the WPTO goal of improving optimization of hydropower plants at both the powerhouse and individual unit scales.

Improved flow measurement for plants with short converging intakes empowers a better understanding of unit/plant efficiency. Accurate efficiency measurements enables a broad portfolio of benefits including:

- a) Increased generation from existing water
- b) Improved understanding of system health
- c) Enhanced assessment of performance obligations

Development of flow measurement systems was achieved through:

- a) Computational tools
- b) Laboratory experiments
- c) Field validation studies

FY17	FY18	FY19 (Q1 & Q2 Only)	Total Project Budget FY17–FY19 Q1 & Q2 (October 2016 – March 2019	
Costed	Costed	Costed	Total Costed	Total Authorized
[\$193.3K]	[\$108.7K]	[\$109.7K]	[\$411.7K]	[\$523.7K]

Management Approach:

- The PNNL project team is led by nationally and internationally recognized researchers for each major technical area involved in this project.
- The project team communicates regularly with WPTO
- The project has seen success in the computational, laboratory and field study milestones over the FY17-FY19 period, including:
 - ✓ A refined numerical test bed simulation for an intake reference flow and virtual sensor measurements and compare to refined laboratory test data,
 - \checkmark Representative testing of instrumentation in the laboratory, and
 - ✓ Successful field validation experiments at Chief Joseph Dam, WA.

	2017	7		2018	3		2019	9
Computational Study								
Experimental Validation								
Field Work Validation								

Management and Technical Approach

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technical Approach:

Computational Analyses

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

8 | Water Power Technologies Office

U.S. DEPARTMENT OF ENERGY

Management and Technical Approach

U.S. DEPARTMENT OF E

Energy Efficiency & Renewable Energy

Technical Approach:

End-User Engagement and Dissemination Strategy

Energy Efficiency & Renewable Energy

- The project received valuable feedback from the hydropower community during one-on-one meetings, webinars, conferences, and workshops.
 - Collaborative field study partners (Chief Joseph Dam, USACE Seattle) resulted from presenting the concept to members of the USACE Hydroelectic Design Center (HDC).
 - > Communication of these results with USACE has been ongoing.
- Results of this study will be communicated to the hydropower community through peer reviewed publications and technical reports of the technology demonstration.

Technical Accomplishments

ENERGY Energy Efficiency & Renewable Energy

Laboratory Experiments

Field Validation

- Completed "Virtual Instrument" study of flow measurement in short converging intakes.
- Journal articles published since last WPTO Peer Review:
 - Romero Gomez, P.D.J., S. Harding, M Richmond.
 2017. The Effects of Sampling Location and Turbulence on Discharge Estimates in Short Converging Turbine Intakes, *Engineering Applications* of Computational Fluid Dynamics, 11(1), 513-525.
 - ✓ Romero-Gomez, P., and M.C. Richmond. 2017. Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study, *Journal of Hydraulic Research*, 55, 706-720.
- CFD techniques proven in preliminary studies applied to field validation intake (Chief Joseph Dam, USACE, WA)

Technical Accomplishments (Cont.)

Energy Efficiency & Renewable Energy

- The performance of the ADCP near solid boundaries has been investigated using a series of validation experiments in the laboratory at PNNL.
- These tests explored the accuracy of the ADCP measurement in close proximity to side-walls through validation with high resolution acoustic Doppler velocimeter (ADV) point measurements in non-homogeneous jet flow within a large recirculating water flume.
- These results are being prepared for publication in a technical report.

-0.5 ⊾ -0.5

0

0.5

1

ADCP (m/s)

1.5

2

Field Validation

Technical Accomplishments (Cont.)

- Field validation of the selected discharge measurement system was performed at Chief Joseph Dam, WA.
- Software was developed to control the linear actuator (right), and calculate a discharge from the measured velocity data.
- Discharges were validated against existing ultrasonic flow measurement results available on the selected intake, showing agreement to <3% for full operational range of the unit.
- These results are being prepared for publication in a technical report.

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Energy Efficiency & Renewable Energy

VS

U.S. DEPARTMENT OF

	$Q_{ m error}(\%) = rac{Q - Q_{ m ref}}{Q_{ m ref}}$					
	Min Flow (55 MW)	Lower 1% (65 MW)	BEP (75 MW)	Max. Flow (88 MW)		
Constant Power	2.6 %	2.6 %	2.6 %	1.6 %		
Constant Gate Angle	2.6 %	2.1 %	0.6 %	1.2 %		

Questions?

samuel.harding@pnnl.gov

Acknowledgements:

Chief Joseph Dam

Hydroelectric Design Center

Treatment of Unmeasured Regions

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Non-homogeneous Flow

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Flow Asymmetry:

Flow Disturbance:

