Water Power Technologies Office
2019 Peer Review
Marine and Hydrokinetics Presentation Template
Robotic Juggler Offshore WEC
EE0008388

Marine and Hydrokinetics Program
10-10-19

Vassos Vamvas
Enorasy LLC
Project Overview

Project Summary

The Robotic Juggler (RJ) device is an offshore floating WEC, which utilizes a rotating eccentric mass. This mass rotates about a vertical shaft and provides rotation to a permanent magnet generator. RJ’s PTO is entirely enclosed within the WEC’s hull. Rolling motion of the PTO occurs within the hull.

Project Objective & Impact

BP1 objective: numerically model the RJ WEC and validate the ACE metric.

BP2 objective: develop, tank test and validate the ACE performance of a 1:20 scale prototype, with active control.

This work is needed to “open the door” to a next project, RJ4 (4 eccentrics), aiming to quadruple the power output utilizing the same hull.

Project Information

Project Principal Investigator

- Vassos Vamvas

WPTO Lead

- Carrie Noonan

Project Partners/Subs

- University of Massachusetts
- National Renewable Energy Laboratory
- Stony Brook University

Project Duration

- Project Start Date: 10/1/2018
- Project End Date: 6/30/2021
Alignment with the Program

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing
Alignment with the MHK Program

Foundational and Crosscutting R&D

- Drive innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications
- Develop, improve, and validate numerical and experimental tools and methodologies needed to improve understanding of important fluid-structure interactions
- Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions
- Collaboratively develop and apply quantitative metrics to identify and advance technologies with high ultimate techno-economic potential for their market applications

- The project will use the ACE metric as an indicator of the power produced in a series of tests and simulations in a variety of wave environments.
- RJ’s PTO is entirely enclosed and allows the use of conventional materials and off-the-shelf components, thus lowering CAPEX and maintenance costs, while maximizing the WEC’s life-cycle perspectives.
- The project will enable: (i) blue economy applications (ii) defense underwater operations and (iii) the collocation of offshore wind farms with WECs.
Alignment with the MHK Program

Technology-Specific Design and Validation

- Validate performance and reliability of systems by conducting in-water tests of industry-designed prototypes at multiple relevant scales
- Improve methods for safe and cost efficient installation, grid integration, operations, monitoring, maintenance, and decommissioning of MHK technologies
- Support the development and adoption of international standards for device performance and insurance certification
- Evaluate current and potential future needs for MHK-specific IO&M infrastructure (vessels, port facilities, etc.) and possible approaches to bridge gaps

- The project includes the design and construction of a 1:20 scale RJ prototype, and the evaluation of the prototype’s performance and reliability in wave tank tests.
- The RJ system uses conventional components and materials, thus lowering CAPEX and maintenance costs.
Total actual costs < Project budget

Budget is conserved, as the complication of the 6 DOF num. modelling task may require additional resources.

<table>
<thead>
<tr>
<th>Total Project Budget – Award Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE</td>
</tr>
<tr>
<td>[$808,434]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FY17</th>
<th>FY18</th>
<th>FY19 (Q1 & Q2 Only)</th>
<th>Total Actual Costs FY17–FY19 Q1 & Q2 (October 2016 – March 2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costed</td>
<td>Costed</td>
<td>Costed</td>
<td>Total</td>
</tr>
<tr>
<td>[$0]</td>
<td>[$0]</td>
<td>[$93,052]</td>
<td>[$93,052]</td>
</tr>
</tbody>
</table>
Management Approach

Enorasy LLC is a young startup and uses complementary expertise from:

- Key strategic partners, including UMASS and NREL.*
- MIT talent, which is in proximity, i.e. for assistance in RJ’s structural analysis study.
- Subcontractors with state-of-the-art skills on motion analysis, numerical modeling, simulation and control systems.

*NREL, is the co-developer of the WEC-Sim software, which is used for RJ’s numerical modelling.
Technical Approach

• Numerical modelling and simulation with feedback from pre-existing small scale prototype tank tests.
• Construction of a representative 1:20 scale prototype to demonstrate RJ features, power output and robustness.
• Key project milestones:
 – RJ materials and generator selection: completed
 – RJ’s 3D CAD design: completed
 – RJ’s hydrodynamic analysis: completed
 – Num. modelling: under development
 – Active control: under development
 – ACE calculations: under development
 – BP1 report expected: June 2020
Management and Technical Approach

- RJ's wave power capture is maximized when the rotating mass completes a 360° rotation per wave period.
Management and Technical Approach

- Critical success factors for commercial viability:
 - substantial electrical power production
 - survivability in harsh wave climates
End-User Engagement and Dissemination Strategy

• RJ is a scalable WEC. A variety of blue economy stakeholders and end-users of aquaculture, desalination, UUV recharging and eventually the electrical grid will benefit from RJ’s renewable electrical power output.
• A report on RJ’s hydrodynamic analysis was presented in Water Power Week 2019.
• A DARPA presentation was delivered at DARPA’s headquarters in May 2019.
• Defense industry stakeholders are interested in the magnitude of the electrical power that can be produced from the project’s wave tank tests in BP2.
• Stakeholders will be informed on R&D improvements through presentations, posters and prototype demos aiming at a strategic partnership and commercialization.
Technical Accomplishments

• RJ’s 3D CAD completed, (1st qtr., as planned). It provided the basis for the hydrodynamic analysis.
• RJ’s hydrodynamic analysis and validation completed (2nd qtr., as-planned). It provided the systems’ hydrodynamic “id” to be used in the development of the numerical model.
• Currently we are improving RJ’s numerical model and developing a control system.
• Improved RJ num. model without active control matches the wave period.
Future Work

• The project’s challenge is to improve RJ’s numerical model to reflect, at least, the preliminary results achieved by RJ’s 1:58 physical prototype.
• BP1’s future work will be dedicated to the improvement of the numerical model, and validation of the ACE metric.
• BP2 will build a 1:20 representative prototype and calculate an ACE.