

Energy Efficiency & Renewable Energy

NoiseSpotter: A cost-effective, real-time acoustic characterization and localization system EE0007822

Marine and Hydrokinetics Program October 9, 2019 Kaus Raghukumar

Integral Consulting Inc.

Project Overview

U.S. DEPARTMENT OF Ener ENERGY Rene

Project Summary	Project Information				
"NoiseSpotter" helps efficiently evaluate potential acoustic effects of	Project Principal Investigator(s)				
MHK projects. NoiseSpotter geolocates sources of sound, allowing for the ability to discern MHK device sounds relative to other confounding sounds in the environment, while providing location estimates of nearby marine mammals for environmental mitigation	Kaus Raghukumar Grace Chang Craig Jones				
that can help address growing concerns about particle velocity	WPTO Lead				
effects on fishes and invertebrates.	Dana McCoskey				
Project Objective & Impact					
Characterization of MHK noise requires distinguishing device	Project Partners/Subs				
 sounds from ambient environmental sounds using geolocation techniques A major objective of this work is the development of a low-cost, real-time acoustic measurement system to monitor and 	Proteus Technologies Sandia National Labs Noise Control Engineering HT Harvey and Associates				
characterize MHK and ambient environmental sounds	Project Duration				
 The final project product is a 3D array of acoustic sensors coupled to a surface buoy for near real-time telemetry of acoustic data digests to a cloud-based server. 	 Project Start Date: November 2016 Project End Date: December 2019 				

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing

Alignment with the MHK Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Reducing Barriers to Testing

- Enable access to world-class testing facilities that help accelerate the pace of technology development
- Work with agencies and other groups to ensure that existing data is wellutilized and identify potential improvements to regulatory processes and requirements
- Support additional scientific research as needed, focused on retiring or mitigating environmental risks and reducing costs and complexity of environmental monitoring
- Engage in relevant coastal planning processes to ensure that MHK development interests are equitably considered

This project is developing an acoustic monitoring system to detect and characterize baseline noise and low level continuous noise from MHK device operations and support geolocation of detected noise(s) relative to source(s). The NoiseSpotter enables cost-effective, realtime acoustic monitoring of an operational MHK device relative to ambient environmental noises. The technology provides a technical basis for MHK developers seeking to streamline the permitting process by helping to mitigate concerns about the potential for MHK device noise to alter marine mammal or fish behavior.

Total Project Budget – Award Information				
DOE	Cost-share	Total		
[\$745,649]	[\$199,666]	[\$945,315]		

FY17	FY18	FY19 (Q1 & Q2 Only)	Total Actual Costs FY17–FY19 Q1 & Q2 (October 2016 – March 2019)
Costed	Costed	Costed	Total
[\$110,305]	[\$411,184]	[\$188,829]	[\$710,318]

Management Approach

Energy Efficiency & Renewable Energy

Management approach	H.T. Harvey & Associates S. Kramer Environmental impact expertise; stakeholder engagement									
Noise-Control Engineering J. Spence Technology development: flow noise shield	Integral Consulting Inc. K. Raghukumar (PI) G. Chang F. Spada C. Jones	Proteus Technologies S. Griffin Technology development: datalogger and real- time telemetry								
		Milestone Gantt chart	BP1 (Months 1-12)				BP2 (Months 13-24)			
	Sandia National		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	J. Roberts Relevance to DOE, developers, and stakeholders	First round In-water testing plan Preliminary hardware design Baseline and initial testing with known source Technical and cost improvement plans Second round in-water testing Flow noise removal system development Data logger and power system hardware Location estimation algorithm development Integrated standalone NoiseSpotter powered with on-board storage tested in-water Technical and cost performance analysis update Finalize VSA design Real-time data telemetry software demonstration Creation of data digests on board NW Third round field testing in energetic environment Evaluation of quantitative metrics for baseline, initial, second round testing and state-of-the-art Final reporting								

BP3 (Months 2

Q2

Q3

Q4

Q1

Technical Approach

U.S. DEPARTMENT OF

Critical success factors

- Location estimation
- Real-time reporting
- Target price

- Flow noise removal
- Ease of operations

Performance category	Target metric		
Detection frequencies	40 Hz to 3 kHz		
Location estimation	Within larger of 25 m or 2% of range between source and measurement		
Ambient noise removal	Coherent processing across multiple sensors suppresses incoherent ambient noise		
Flow noise removal	>3 dB		
Clock	All sensors synchronized to buoy-based GPS clock		
Data communication system	6 kb transmission of key data metric digest (see below); satellite range: unlimited; < 1% data drop-outs; automatic data queuing; automatic communication system re-establishment		
Onboard data storage	48 GB/day @ 25 kHz for 21 days		
Power budget	2 W of electrical power including acoustic sensors, analysis, and storage		
Operational duration	Autonomously for 14 days (limited by data storage); indefinite for data digests only (limited by marine fouling on the buoy and mooring system)		
Operational environment	Any: inland waters, harbors, surf zone, coastal ocean, open ocean; low to high energy		
Data presentation and interpretation	Short data digests allow for rapid decision making. Digests contain peak exceedance levels, RMS sound pressure level, location estimates with error bounds.		
Cost	<\$30,000		

End-User Engagement and Dissemination Strategy

- **ENERGY** Energy Efficiency & Renewable Energy
- Introduced to regulators and stakeholders at multiple conferences
 - Marine Energy Technology Symposium (2018,2019)
 - Offshore Technology Conference (2019)
 - Underwater Acoustics Conference and Exhibition, 2019
 - Effects of Noise on Aquatic Life, 2019
- Industry and regulator needs surveyed and addressed during Q8 in-water testing
- Aim of surveys
 - Ensure NoiseSpotter hardware and operations is appropriate for developers
 - Data output is useful for baseline site characterization and operational deployments

Technical Accomplishments -Motivation

U.S. DEPARTMENT OF

Technical Accomplishments -Overview

U.S. DEPARTMENT OF

- Vector sensor array with real-time telemetry
 - 3D pressure and particle motion measurements
 - Acoustic characterization and source localization
- Operating environment
 - Tidal regions
 - Wave-rich regions
 - 200 m water depth (no telemetry),
 75 m (with telemetry)
- Technical specifications
 - Frequency range (50 Hz to 3 kHz)
 - Sampling frequency (20 kHz, 16-bit depth)
 - Array spacing (1 m horizontal, 25 cm vertical)

Technical Accomplishments – Measurement examples

U.S. DEPARTMENT OF

Technical Accomplishments – Location estimation

U.S. DEPARTMENT OF

Technical Accomplishments – Flow noise removal

U.S. DEPARTMENT OF

Technical Accomplishments – Flow noise removal efficiency

• Relationship between particle velocity cross-spectra and active & reactive intensity spectra

$$M_{x} = \frac{|Q_{yz}(\omega)| - \left| \left(\frac{C_{p[x,y,z]}(\omega) \times Q_{p[x,y,z]}(\omega)}{S_{pp}(\omega)} \right)_{x} \right|}{|Q_{yz}(\omega)| + \left| \left(\frac{C_{p[x,y,z]}(\omega) \times Q_{p[x,y,z]}(\omega)}{S_{pp}(\omega)} \right)_{x} \right|}$$

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

- Values of M₂₁ that diverge from zero indicate non-acoustic contamination
- Compare distribution of M₂₁, M₂₂, M₂₃ over 30-minute periods with and without flow shields

Technical performance analysis

	Engineering/Data issue	Target score and metrics by end of BP2	Current score
	Array frame motion	1	1
	5	<5° movement in pitch, roll,	<5° movement in pitch, roll,
2		and yaw in energetic seas	and yaw in energetic seas
	Signal losses	0	0
2		2 dB signal loss	2 dB signal loss
2	Unwieldiness of system	2	2
)		Two personnel required for	Two personnel required for
5		deployment and recovery	deployment and recovery
	Flow noise removal	2	1
5	system	Flow noise reduction of 2 dB at	Flow noise reduction of >15 dB
5		<200 Hz and <1 dB signal loss	at <200 Hz and <1 dB signal
2		at >1 kHz	loss at >200 Hz
5	Data quality of M20-040	0	0
		Zero dB degradation in signal	Zero dB degradation in signal
Ę		to noise ratio	to noise ratio
5	Data logger noise	2	2
-		VSA signals comparable to	VSA signals comparable to
		BAR data	BAR data
	Feasibility of location	4	3
	estimation	Bearing estimates <100 m of	Bearing estimates well within
		known source	100 m of known source

Cost performance analysis

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Cost performance analysis:

Baseline (broadband autonomous hydrophone) Initial (NoiseSpotter, no telemetry): 20% savings over baseline Improved (NoiseSpotter with telemetry): 50% savings over baseline

Technical Accomplishments-Recognition/publications

- NoiseSpotter is the only commercial vector sensor array with real-time telemetry
- Featured on on DOE WPTO semiannual stakeholder webinar (February 7, 2019)
- Conference papers
 - "Raghukumar, K. G. Chang, F. Spada, and C. Jones. 2019. Performance characteristics of the NoiseSpotter: An acoustic monitoring and localization system.
 A. Cooper and P. Gibbs (Eds.). Offshore Technology Conference (OTC2019). Houston, TX.
 - Raghukumar, K., G. Chang, F. Spada, C. Jones, J. Spence, S. Griffin, and <u>J. Roberts</u>.
 2019. Performance characteristics of a vector sensor array in an energetic tidal channel. Papadakis et al. (Eds), Proceedings of the Underwater Acoustics Conference & Exhibition (UACE). Crete, Greece.
 - Raghukumar, K., G. Chang, F. W. Spada, and C. A. Jones. 2019. NoiseSpotter: A rapidly deployable acoustic monitoring and localization system. Vicinanza et al. (Eds), Proceedings of the 13th European Wave and Tidal Energy Conference. Naples, Italy.
- Novel instrumentation
 - Synchronous multichannel low noise, low power, extended storage data logger

Progress Since Project Summary Submittal

ENERGY Energy Efficiency & Renewable Energy

• Planning for WETS testing

- Evaluation of telemetry data mismatch
- Final reporting