

Energy Efficiency & Renewable Energy

Hydrodynamic and Acoustic Models for Quantitative Environmental Assessment

WBS 2.3.2.701

Marine and Hydrokinetics Program

October 8th, 2019

Jesse Roberts

Sandia National Laboratories

Project Overview

ENERGY Energy Efficiency & Renewable Energy

Project Summary	Project Information	
Fulfill an industry need for methodologies and open-source	Project Principal Investigator(s)	
 software tools that quantify, a priori, the effects of MHK-device interactions and MHK-generated noise in marine environments The state-of-the-art modeling tools support accurate characterization, screening, and mitigation of environmental risk while previous for east entire environmental while previous thet 	Jesse Roberts	
while providing for cost-optimized MHK project planning that maintains environmental compliance.	WPTO Lead	
 Quantifying and minimizing uncertainty in regulatory processes increases investor confidence and decreases project risks, thereby improving commercialization outlooks. 	Simon Gore	
Project Objective & Impact	Project Partners/Subs	
 Develop tools to support screening and/or mitigating environmental risks associated with MHK induced changes to the physical and acoustic environment to reduce costs and time associated with environmental compliance and enable 	Integral Consulting Montana State University, Baylor University H. T. Harvey and Associates Mott McDonald Mocean Energy	
responsible MHK energy development through good stewardship.	Project Duration	
 Help developers meet challenging site- and technology- specific environmental assessment needs identified as key reasons projects did not move forward. 	• FY13 • FY21	

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing

Alignment with the MHK Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Foundational and Crosscutting R&D

 Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions The hydrodynamic models used here to assess environmental change are the same tools used for characterizing site resource. By combining the two, the models can analyze and inform optimal array designs that maximize power production while minimizing environmental risk.

Alignment with the MHK Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Reducing Barriers to Testing

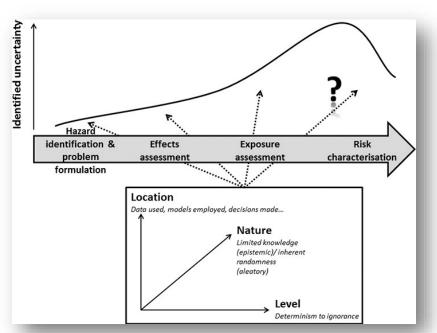
- Work with agencies and other groups to ensure that existing data is wellutilized and identify potential improvements to regulatory processes and requirements
- Support additional scientific research as needed, focused on retiring or mitigating environmental risks and reducing costs and complexity of environmental monitoring

The research assesses changes to the physical and acoustic environments incurred by operation of wave energy converter (WEC) and current energy converter (CEC) arrays, including potential stressors to the ecosystem. This foundational work builds the confidence and evidence for quantifying, screening, and mitigating environmental risks while transparently communicating results to improve the regulatory process.

FY17	FY18	FY19 (Q1 & Q2 Only)	Total Project Budget FY17–FY19 Q1 & Q2 (October 2016 – March 2019)	
Costed	Costed	Costed	Total Costed	Total Authorized
\$944K	\$701K	*\$244K	\$1,889K	\$2,321K

*Costed amount in FY19 (Q1 and Q2) does not include subcontract partner costs due to delays in subcontractor invoicing.

- Actual costs, including subcontractor efforts, is approximately \$450K.


Project Value

FOUNDATIONAL and CROSSCUTTING

Environmental Risk

Characterization and communication of risk can provide **substantial barriers** to site deployment

Wind	1	Vave	Near Shore Tic	Near Shore Tidal Oce		Ocean Thermal
TT III G		iure	incur billore inc		arreatent	occumentati
		Enviro	onmental Stress	sors (Level 2)		
Physical Presence of Devices	Dynam of D	ic Effects evices	Energy Removal Effects	Chemical	Acoustic	Electromagnetic Fields
		Enviro	nmental Recep	tors (Level 3)		
Physical Environment	Pelagic Habitat	Benthic Hab and Specie		Marine Birds	Marine Mammals	Ecosystem and Food Chain
		Envi	ronmental Effe	ct (Level 4)		
Single/Short Term		Single/Long T	lerm -	Multiple/Sho	rt Term	Multiple/Long Term
		Envir	onmental Impa	act (Level 5)		
Population Change		Community Ch	nange	Biotic Process A	Iteration	Physical Structure/ Process Alteration
		Cur	nulative Impac	t (Level 6)		
Spat	ial		Temporal		Other Hu	man Activities

Framework for Assessment

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

A robust framework populated with state-of-the-science tools allows for enhanced characterization and communication.

End-User Engagement and Dissemination Strategy

Key thrust

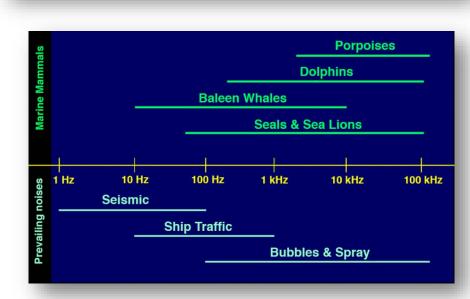
"MHK-friendly" numerical modeling tools capable of assessing potential changes to the physical and acoustic environment caused by operation of MHK arrays

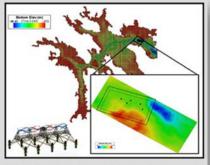
Industry benefits

Urgent need to reduce costs and time associated with meeting regulatory requirements

Regulator Benefits

Build mutual confidence in the tools, methods, and overall findings, helping set a course toward improved licensing and permitting for all MHK projects


SNL-Delft3D-CEC


U.S. DEPARTMENT OF

ENERGY

Sandia National Laboratories enhancements to Delft3D for simulating the effects of Current Energy Converters on the marine environment.

Cobscook Bay regional-scale domain with an inset showing a refined domain around proposed locations of the Ocean Renewable Power Company (ORPC) developed TidGenTM tidal turbines.

Energy Efficiency &

Renewable Energy

Management and Technical Approach

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Major Tasks for Research

- Development and outreach with Spatial Environmental Assessment Tool (SEAT)
- Changes to wave propagation, ocean circulation, and sediment dynamics due to the operation of WEC arrays,
- Modifications to near- and far-field hydrodynamics, sediment dynamics, and water quality from CEC arrays, and
- The noise generated and propagated by multiple MHK device archetypes (CECs and WECs).

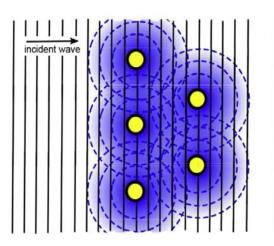
EXAMPLE SMART Milestones

Task 1 – WEC Array Model Improvements

Publish results from expanded numerical modeling comparison of WEC arrays using WEC module in SWAN and WAMIT. Publish full integration of SNL-SWAN, SNL-Delft3D, and SEAT models and the evaluation of environmental stressor-receptor relationships.

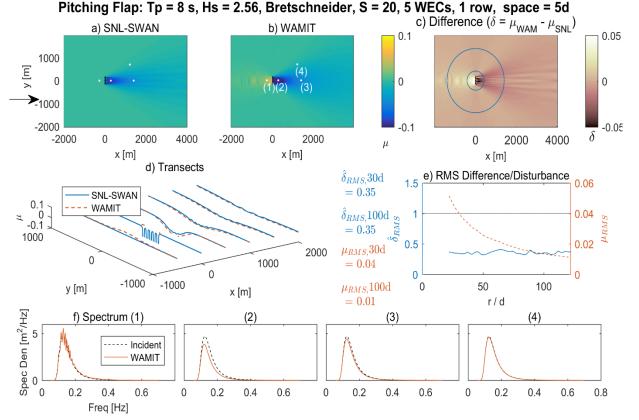
Task 2– CEC Array Model Improvements

SNL-Delft3D-FM turbulence results show good agreement (within 25%) to the model implemented in the structured Delft3D. Illustrate that SNL-Delft3D-FM results can be incorporated into an effective SEAT application.


Task 3– Acoustic Generation and Propagation Model Improvements

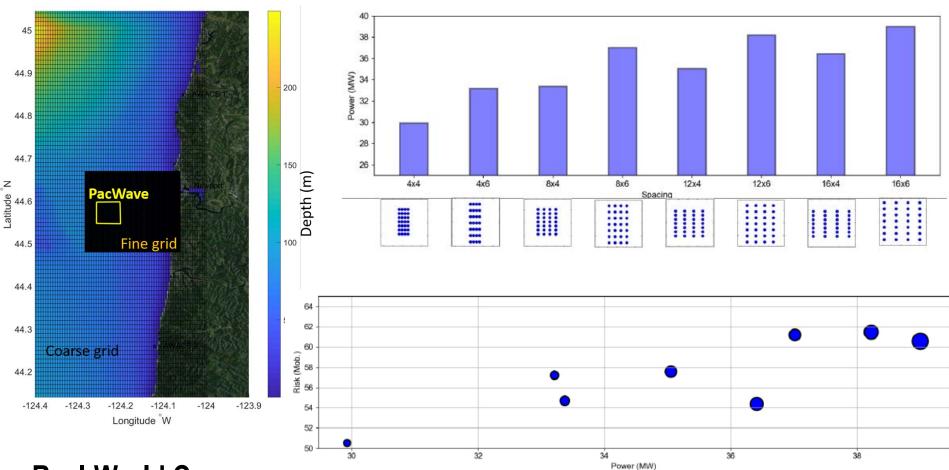
Completion of validation cases, course materials, and publication of those materials. Summary of user feedback and recommendations on training material and model development.

Technical Accomplishments *WEC Code Developments*


Energy Efficiency & Renewable Energy

WEC Model Development

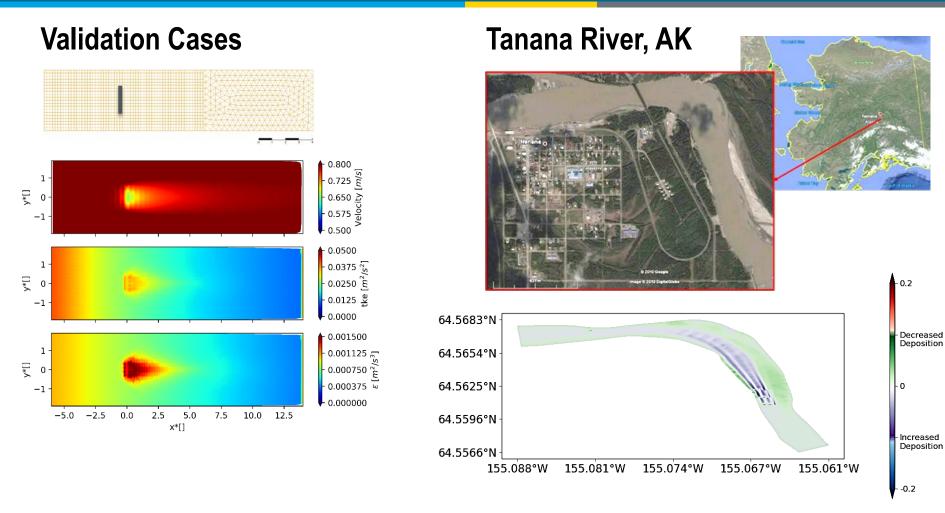
Model Development


The modeling team has conducted rigorous validation and characterization of the trade offs between near and far field modeling. This foundational work provides a better real-world understanding and confidence in how WECs are simulated in the marine environment.

Technical Accomplishments WEC Model Developments

ENERGY Ene

Energy Efficiency & Renewable Energy


Real-World Cases

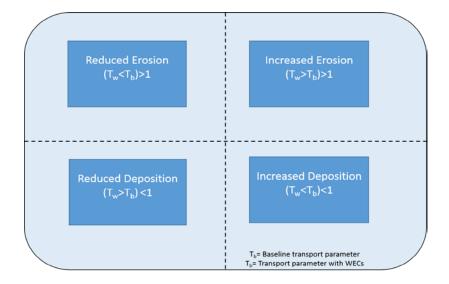
Example sites have been developed and validated for testing and demonstration of tool capabilities. These quantitative tools enable the balancing of power production and risk.

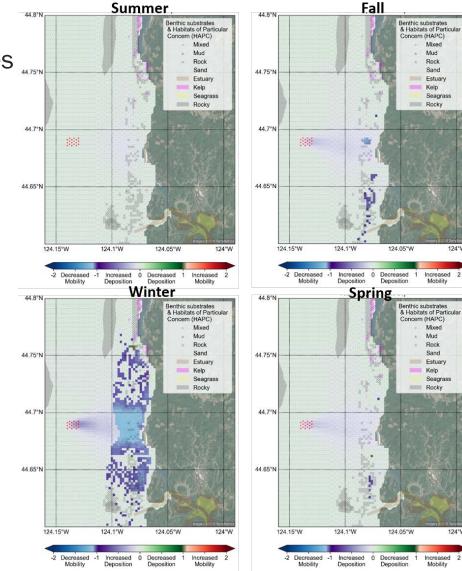
Technical Accomplishments *CEC Model Developments*

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Validations of industry standard open source CEC modules provides industry and regulatory confidence. Further, using state-of-the-art flexible mesh modeling tools provides this level of modeling to all user bases.

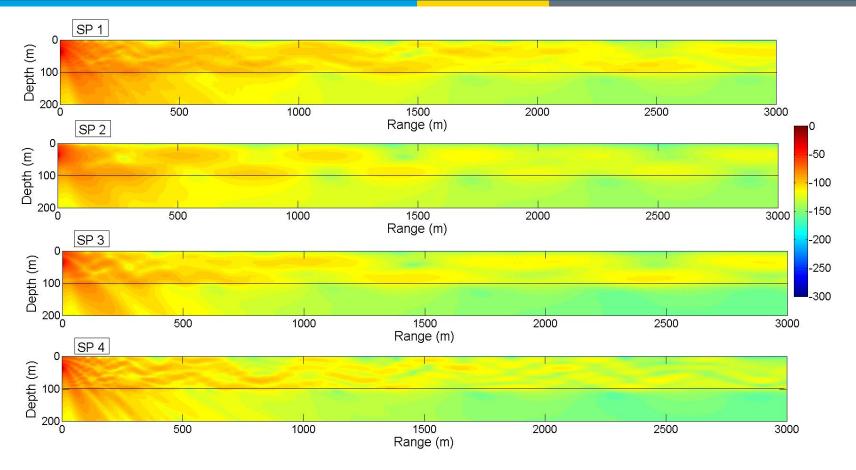

Technical Accomplishments Spatial Environmental Assessment


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Linking the results from the physical modeling tools to real-world risk provides a clear and robust way for developers, scientists, and regulators to communicate with confidence.

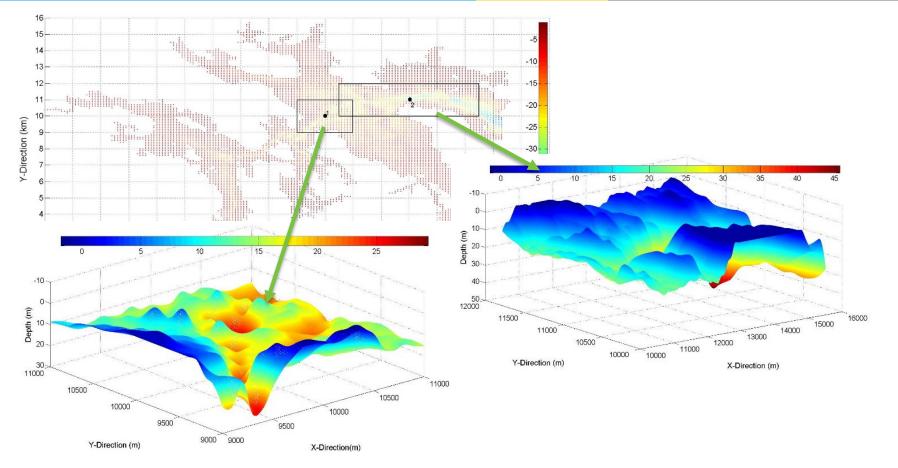
$$R_{\tau} = int\left(\frac{T_w - T_b}{|T_w - T_b|} T_w\right) + [T_w - T_b]$$



Technical Accomplishments Paracousti Developments

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

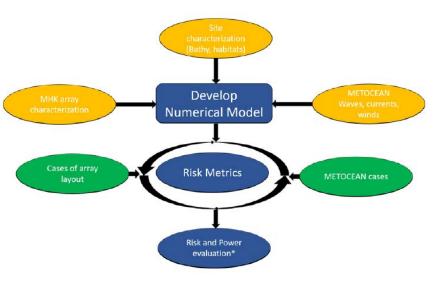


Paracousti is an **open-source** tool for 3D underwater acoustics that solves for the time-history soundscape from multiple devices in complex bathymetry. It is the **first, publicly available MHK acoustics tool** with this capability and has been released with tutorials and webinars.

Technical Accomplishments Paracousti Developments

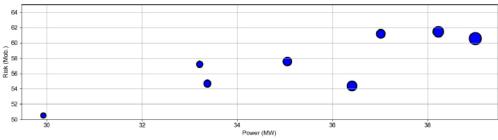
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



Real-World Cases

Example sites have been developed and validated for testing and demonstration of tool capabilities. These cases provide outreach materials for end users.


Future Work

Key Thrust

"MHK-friendly" numerical modeling tools capable of assessing potential changes to the physical and acoustic environment caused by operation of MHK arrays

Future Work

- Automation of optimization tools
- Extension of case studies across DOE project
- Increase user base through "easy" tools and training
- Build mutual confidence through aggressive outreach