Water Power Technologies Office 2019 Peer Review

Energy Efficiency & Renewable Energy

CalWave Open Water Demonstration DE-EE0008097

Marine and Hydrokinetics Program October 10th 2019

Thomas Boerner M.Sc. M.Sc. CalWave Power Technologies Inc.

Project Overview

Project Summary	Project Information
Under FOA-1663, CalWave Power Technologies Inc (CalWave) uses	Project Principal Investigator(s)
	Marcus Lehmann, Ph.D. Thomas Boerner M.Sc. M.Sc.
	WPTO Lead
and operation of the demonstration unit in open water close to the Scripps Institution of Oceanography.	Yana Shininger Lauren Moraski
Project Objective & Impact	Martha Amador
- Detailed design and fabrication planning of the scaled demonstration	Project Partners/Subs
	Sandia National Laboratory National Renewable Energy Laboratory UC Berkeley & UC San Diego/Scripps Czero, Evergreen Innovations Glosten Associates Delmar Systems
	Project Duration
	Project Start: September 2017 Project End: February 2021
2 Water Power Technologies Office	eere.enerav.gov

Project Overview

ENERGY Renewa

Project Summary	Project Information	
Under FOA-1663, CalWave Power Technologies Inc (CalWave) uses	Project Principal Investigator(s)	
advanced numerical simulations, hardware/tank testing, and ultimately scaled open water demonstration to increase the TRL level of an advanced WEC design while continuing to exceed DOE's target ACE threshold of 3 meters/M\$. Budget Period 1 concluded in June 2019 with detailed design of the scaled demonstration unit and bonch testing of the	Marcus Lehmann, Ph.D. Thomas Boerner M.Sc. M.Sc.	
critical hardware components. Budget Period 2 entails the installation	WPTO Lead	
and operation of the demonstration unit in open water close to the Scripps Institution of Oceanography.	Yana Shininger Lauren Moraski	
Project Objective & Impact	Martha Amador	
- Detailed design and fabrication planning of the scaled demonstration	Project Partners/Subs	
	Sandia National Laboratory National Renewable Energy Laboratory UC Berkeley & UC San Diego/Scripps Czero, Evergreen Innovations Glosten Associates Delmar Systems	
of the scaled demonstration unit - Performance and load measurements for validating of high techno- economic performance of the full-scale device. - Advance the TRL of CalWave's WEC design while continuing to exceed DOE's target ACE threshold of 3 meters/M\$	Project Duration	
	Project Start: September 2017 Project End: February 2021	

Project Overview

ENERGY Renewa

Project Summary	Project Information
Under FOA-1663, CalWave Power Technologies Inc (CalWave) uses	Project Principal Investigator(s)
advanced numerical simulations, hardware/tank testing, and ultimately scaled open water demonstration to increase the TRL level of an advanced WEC design while continuing to exceed DOE's target ACE threshold of 3 meters/M\$. Budget Period 1 concluded in June 2019 with detailed design of the scaled demonstration unit and bench testing of the critical hardware components. Budget Period 2 entails the installation and operation of the demonstration unit in open water close to the Scripps Institution of Oceanography.	Marcus Lehmann, Ph.D. Thomas Boerner M.Sc. M.Sc.
	WPTO Lead
	Yana Shininger Lauren Moraski
Project Objective & Impact	Martha Amador
 Detailed design and fabrication planning of the scaled demonstration unit; risk management; installation, operation and maintenance planning; Validation of device performance and wave load management capabilities using advanced numerical simulations, wave tank testing, and hardware-in-the-loop component testing Manufacturing, open sea deployment, operation and decommissioning of the scaled demonstration unit Performance and load measurements for validating of high techno- economic performance of the full-scale device. Advance the TRL of CalWave's WEC design while continuing to exceed DOE's target ACE threshold of 3 meters/M\$ 	Project Partners/Subs
	Sandia National Laboratory National Renewable Energy Laboratory UC Berkeley & UC San Diego/Scripps Czero, Evergreen Innovations Glosten Associates Delmar Systems
	Project Duration
	Project Start: September 2017 Project End: February 2021

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Marine and Hydrokinetics (MHK) Program Strategic Approaches

Data Sharing and Analysis

Foundational and Crosscutting R&D

Technology-Specific Design and Validation

Reducing Barriers to Testing

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Foundational and Crosscutting R&D

- Drive innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications
- Develop, improve, and validate numerical and experimental tools and methodologies needed to improve understanding of important fluidstructure interactions
- Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions
- Collaboratively develop and apply quantitative metrics to identify and advance technologies with high ultimate techno-economic potential for their market applications

1. CalWave's Holistic Control approach:

Novel load management capabilities to directly control the energy input/wave loads exerted into the physical structure:

Absorber hydrodynamic tuning and load management

Being similar to pitch- and yaw control in wind energy, this novel approach has not been implemented in any deployed WEC so far. However, this allows a paradigm shift in designing and operating WEC devices.

2. Experimental system identification tests for multiple degrees of freedom:

Derivation of precise hydrodynamic models for simulation and control via experiments.

SNL staff attended wave tank testing campaigns. Results were used to verify the system identification principles/approaches published by Sandia prior using a floating point-absorber for an inherently different WEC architecture.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Foundational and Crosscutting R&D

- Drive innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications
- Develop, improve, and validate numerical and experimental tools and methodologies needed to improve understanding of important fluidstructure interactions
- Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions
- Collaboratively develop and apply quantitative metrics to identify and advance technologies with high ultimate techno-economic potential for their market applications

1. CalWave's Holistic Control approach: Novel load management capabilities to directly control the energy input/wave loads exerted into the physical structure:

Absorber hydrodynamic tuning and load management

Being similar to pitch- and yaw control in wind energy, this novel approach has not been implemented in any deployed WEC so far. However, this allows a paradigm shift in designing and operating WEC devices.

2. Experimental system identification tests for multiple degrees of freedom:

Derivation of precise hydrodynamic models for simulation and control via experiments.

SNL staff attended wave tank testing campaigns. Results were used to verify the system identification principles/approaches published by Sandia prior using a floating point-absorber for an inherently different WEC architecture.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Foundational and Crosscutting R&D

- Drive innovation in components, controls, manufacturing, materials and systems with early-stage R&D specific to MHK applications
- Develop, improve, and validate numerical and experimental tools and methodologies needed to improve understanding of important fluidstructure interactions
- Improve MHK resource assessments and characterizations needed to optimize devices and arrays, and understand extreme conditions
- Collaboratively develop and apply quantitative metrics to identify and advance technologies with high ultimate techno-economic potential for their market applications

1. CalWave's Holistic Control approach: Novel load management capabilities to directly control the energy input/wave loads exerted into the physical structure:

Absorber hydrodynamic tuning and load management

Being similar to pitch- and yaw control in wind energy, this novel approach has not been implemented in any deployed WEC so far. However, this allows a paradigm shift in designing and operating WEC devices.

2. Experimental system identification tests for multiple degrees of freedom: Derivation of precise hydrodynamic models for simulation and control via experiments.

SNL staff attended wave tank testing campaigns. Results were used to verify the system identification principles/approaches published by Sandia prior using a floating point-absorber for an inherently different WEC architecture.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technology-Specific Design and Validation

- Validate performance and reliability of systems by conducting in-water tests of industry-designed prototypes at multiple relevant scales
- Improve methods for safe and costefficient installation, grid integration, operations, monitoring, maintenance, and decommissioning of MHK technologies
- Support the development and adoption of international standards for device performance and insurance certification
- Evaluate current and potential future needs for MHK-specific IO&M infrastructure (vessels, port facilities, etc.) and possible approaches to bridge gaps

1. WECs high performance numerical prediction and capability to survive extreme wave events was validated during 7 weeks of wave tank testing at 1:25 scale (operational cases) and 1:30 scale (survival cases).

2. IEC-TS 62600-103 draft **standards** (wave tank assessment) guidelines **applied and critically evaluated**.

- **3.** Final project objectives:
- Deployment and operation of a scaled device in open ocean.
- Device performance validation
- Validate novel Holistic Control approach including hydrodynamic tuning and absorber load management

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technology-Specific Design and Validation

- Validate performance and reliability of systems by conducting in-water tests of industry-designed prototypes at multiple relevant scales
- Improve methods for safe and costefficient installation, grid integration, operations, monitoring, maintenance, and decommissioning of MHK technologies
- Support the development and adoption of international standards for device performance and insurance certification
- Evaluate current and potential future needs for MHK-specific IO&M infrastructure (vessels, port facilities, etc.) and possible approaches to bridge gaps

1. WECs high performance numerical prediction and capability to survive extreme wave events was validated during 7 weeks of wave tank testing at 1:25 scale (operational cases) and 1:30 scale (survival cases).

2. IEC-TS 62600-103 draft **standards** (wave tank assessment) guidelines **applied and critically evaluated**.

3. Final project objectives:

- Deployment and operation of a scaled device in open ocean.
- Device performance validation
- Validate novel Holistic Control approach including hydrodynamic tuning and absorber load management

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technology-Specific Design and Validation

- Validate performance and reliability of systems by conducting in-water tests of industry-designed prototypes at multiple relevant scales
- Improve methods for safe and costefficient installation, grid integration, operations, monitoring, maintenance, and decommissioning of MHK technologies
- Support the development and adoption of international standards for device performance and insurance certification
- Evaluate current and potential future needs for MHK-specific IO&M infrastructure (vessels, port facilities, etc.) and possible approaches to bridge gaps

1. WECs high performance numerical prediction and capability to survive extreme wave events was validated during 7 weeks of wave tank testing at 1:25 scale (operational cases) and 1:30 scale (survival cases).

2. IEC-TS 62600-103 draft **standards** (wave tank assessment) guidelines **applied and critically evaluated**.

- **3.** Final project objectives:
- Deployment and operation of a scaled device in open ocean.
- Device performance validation
- Validate novel Holistic Control approach including hydrodynamic tuning and absorber load management

1. Total Project Budget – Award Information				
DOE	Cost-share	Total		
4,413 [\$K]	1,104 [\$K]	5,517 [\$K]		

2. Budget Histo	ry		3. Total Actual Costs
FY17	FY18	FY19	FY17-FY19 Q1 & Q2 (October
		(Q1 & Q2 Only)	2016 – March 2019)
Costed	Costed	Costed	Total
69 [\$K]	1,586 [\$K]	911 [\$K]	2,566 [\$K]

- No-Cost extension (< 4 month) caused slight delay in budget execution in BP1
- Project still expected to be completed within initial total budget

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

CalWave Project Management Plan as a designated task:

- Product requirements & specifications;
- Tasks outcome thoroughly defined
- SOPO, specification catalogues, involved parties, interdependency between tasks

SMART techno-economic metrics for performance monitoring:

- e.g. LCOE, ACE, device load and power ratios, project timelines
- CalWave baseline defined at start
- Technical and commercial viability dictate development targets

Designated CalWave contact for each external partners Established workflow also *among* involved parties

U.S. DEPARTMENT OF

SMART techno-economic metrics

Energy Efficiency & Renewable Energy

CalWave Project Management Plan as a designated task:

- Product requirements & specifications;
- Tasks outcome thoroughly defined
- SOPO, specification catalogues, involved parties, interdependency between tasks

Sandia

National Laboratories for performance monitoring:

- e.g. LCOE, ACE, device load and power ratios, project timelines
- CalWave baseline defined at start
- Technical and commercial viability dictate development targets

Berkelev

Designated CalWave contact for each external partners Established workflow also *among* involved parties

> EVERGREEN INNOVATION

Glosten

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

(Budget Period 1) Project Setup -

- Six task groups with sub-tasks (WEC design and lab testing period)
- 11 Milestones passed including Milestone verification (external parties)
- 11 Deliverables submitted to MHK-DR including: Content models, design reports, tank testing setup, data, ..)

- 1. Develop WEC System Design
- 2. Numerical Modeling, Controls Development, and Implementation
- 3. Subsystem Lab Testing and De-Risking
- 4. System Fabrication Plan
- 5. Preliminary IO&M and test planning
- 6. Open Water Site Permitting and Planning

Quarterly DOE WPTO update calls & research reports (RPPRs

- 7 RPPRs submitted \rightarrow 7 x **Green** project health indicator
- Successful DOE Go/NoGo Review June 2019 \rightarrow BP2 Go recommendation received

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

(Budget Period 1) Project Setup -

- Six task groups with sub-tasks (WEC design and lab testing period)
- 11 Milestones passed including Milestone verification (external parties)
- 11 Deliverables submitted to MHK-DR including: Content models, design reports, tank testing setup, data, ..)

- 2. Numerical Modeling, Controls Development, and Implementation
- 3. Subsystem Lab Testing and De-Risking
- 4. System Fabrication Plan
- 5. Preliminary IO&M and test planning
- 6. Open Water Site Permitting and Planning

U.S. DEPARTMENT OF

ENERG

Quarterly DOE WPTO update calls & research reports (RPPRs)

- 7 RPPRs submitted \rightarrow 7 x **Green** project health indicator
- Successful DOE Go/NoGo Review June 2019 → BP2 Go recommendation received

Energy Efficiency &

Renewable Energy

WATER POWER

TECHNOLOGIES OFFICE

U.S. DEPARTMENT OF

- #1 Holistic (Controls) Co-Design Approach
- Concurrent design of device controls and all subsystems
- Load Management Control allows for cost efficient design and safe operation (Yaw and Pitch Control in Wind)
- Hydrodynamic Tuning allows for efficient operation, device power rating & sizing

- #2 Key Technical Principles and Challenges
- Hydrodynamic models for advanced geometries and large device displacements
- Device kinematics for true multi-DOF devices influence WEC topology
- PTO dynamics require deep understanding of impedance matching in networks
- WEC Load Management principles as a novel field of research

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- #1 Holistic (Controls) Co-Design Approach
- Concurrent design of device controls and all subsystems
- Load Management Control allows for cost efficient design and safe operation (Yaw and Pitch Control in Wind)
- Hydrodynamic Tuning allows for efficient operation, device power rating & sizing

#2 Key Technical Principles and Challenges

- Hydrodynamic models for advanced geometries and large device displacements
- Device kinematics for true multi-DOF devices influence WEC topology
- PTO dynamics require deep understanding of impedance matching in networks
- WEC Load Management principles as a novel field of research

U.S. DEPARTMENT OF

- #1 Holistic (Controls) Co-Design Approach
- Concurrent design of device controls and all subsystems
- Load Management Control allows for cost efficient design and safe operation (Yaw and Pitch Control in Wind)
- Hydrodynamic Tuning allows for efficient operation, device power rating & sizing

- +#2 Key Technical Principles and Challenges
- Hydrodynamic models for advanced geometries and large device displacements
- Device kinematics for true multi-DOF devices influence WEC topology
- PTO dynamics require deep understanding of impedance matching in networks
- WEC Load Management principles as a novel field of research

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

#3 Validation Efforts Hydrodynamic Models **Modeling and Tuning** Wave Tank SID Hydrodyn. Impedance Validation in irregular waves **Design Loads and** Load Management **Mechanisms** Extreme Events Resource CFD & FEA PTO Dynamics and Impedance PTO bench characterization Spectral characteristics **PTO design & simulation** Hardware in the Loop (HIL)

#4 Third Party Review

- Sandia & IEC TAG members (Wave tank testing & PTO bench)
- NREL (Data post processing)
 - DNV-GL (Design requirements and best practices)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

#3 Validation Efforts Hydrodynamic Models **Modeling and Tuning** Wave Tank SID Hydrodyn. Impedance Validation in irregular waves **Design Loads and** Load Management **Mechanisms** Extreme Events Resource CFD & FEA PTO Dynamics and Impedance PTO bench characterization Spectral characteristics **PTO design & simulation** Hardware in the Loop (HIL)

#4 Third Party Review

- Sandia & IEC TAG members (Wave tank testing & PTO bench)
- NREL (Data post processing)
- DNV-GL (Design requirements and best practices)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

#3 Validation Efforts Hydrodynamic Models q1,si **Modeling and Tuning** Wave Tank SID Hydrodyn. Impedance Validation in irregular waves **Design Loads and** Load Management **Mechanisms** Extreme Events Resource CFD & FEA PTO Dynamics and Impedance 1.0 PTO bench characterization Spectral characteristics **PTO design & simulation** Hardware in the Loop (HIL)

#4 Third Party Review

- Sandia & IEC TAG members (Wave tank testing & PTO bench)
- NREL (Data post processing)
- DNV-GL (Design requirements and best practices)

U.S. DEPARTMENT OF

- **#3** Validation Efforts Hydrodynamic Models q1,si Modeling and Tuning Wave Tank SID Hydrodyn. Impedance Validation in irregular waves **Design Loads and** Load Management **Mechanisms** Extreme Events Resource CFD & FEA PTO Dynamics and Impedance 1.0 PTO bench characterization Spectral characteristics **PTO design & simulation** Hardware in the Loop (HIL)
- #4 Third Party Review
- Sandia & IEC TAG members (Wave tank testing & PTO bench)
- NREL (Data post processing)
 - DNV-GL (Design requirements and best practices)

- Improvements and feedback to the WEC-Sim framework in collaboration with NREL and Evergreen Innovations (e.g. multi-DOF devices, numerical instabilities, Aqua-BEM integration, ...)
- SNL: CFD modeling for extreme wave response: Coupling of CFD tools with other software environments (e.g. Simulink) to simulate staged failure modes of the device in extreme seas (presented at EWTEC 2019).
- Thorough documentation (>10 detailed reports) of a systematic device design on MHKDR for dissemination to the wider community.
- Demonstration device suitable for maritime markets (DOE's "Powering the Blue Economy"). Engagement with multiple potential customers from various industries. Customer discovery has updated and validated commercialization plan.

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- Improvements and feedback to the WEC-Sim framework in collaboration with NREL and Evergreen Innovations (e.g. multi-DOF devices, numerical instabilities, Aqua-BEM integration, ...)
- SNL: CFD modeling for extreme wave response: Coupling of CFD tools with other software environments (e.g. Simulink) to simulate staged failure modes of the device in extreme seas (presented at EWTEC 2019).
- Thorough documentation (>10 detailed reports) of a systematic device design on MHKDR for dissemination to the wider community.
- Demonstration device suitable for maritime markets (DOE's "Powering the Blue Economy"). Engagement with multiple potential customers from various industries. Customer discovery has updated and validated commercialization plan.

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- Improvements and feedback to the WEC-Sim framework in collaboration with NREL and Evergreen Innovations (e.g. multi-DOF devices, numerical instabilities, Aqua-BEM integration, ...)
- SNL: CFD modeling for extreme wave response: Coupling of CFD tools with other software environments (e.g. Simulink) to simulate staged failure modes of the device in extreme seas (presented at EWTEC 2019).
- Thorough documentation (>10 detailed reports) of a systematic device design on MHKDR for dissemination to the wider community.
- Demonstration device suitable for maritime markets (DOE's "Powering the Blue Economy"). Engagement with multiple potential customers from various industries. Customer discovery has updated and validated commercialization plan.

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- Raise awareness of MHK potential on state, local level and in the public domain.
- Ocean conservation awareness
- Promote importance of diverse renewable energies portfolio required for high targets of renewable energy grid penetration
- Engagement with California Energy Commission (EPIC)
- Scripps oceanographic/research community presentation
- Engaged with local congress affiliates

Global Climate Action

Summit 2018

Budget Period 1 Accomplishments (concluded June 2019):

Detailed design of scaled demonstration unit including all subsystems

- Absorber kinematics and hull design:
- PTO and conversion chain design:
- Load management design:
- Mooring and anchor designed:
 - Rick management Installation Maintenance and Operations planni
- 123 potential component/failure modes mitigation identified
- 110 potential activity failure modes and mitigation identified
 - Over 31 high and mid risks removed or mitigated
 - Sub-system lab testing & Hardware-in-the-loop
- PTO and conversion chain components thoroughly tested
- True to deployment scale setup
- Hardware-in-the-loop with validated hydrodynamic models
- 7 weeks of wave tank testing: SID, performance, and load management

and technology

De-risking project

Optimization and de-risking

High

ncluded June 2019): ation unit including all subsystems Hydrodyn. and controls optimization

Physical and electric infrastructure

Physical mechanisms and actuation

Soil conditions and cost optimized

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency & Renewable Energy

techno-economic

performance

Energy Efficiency & Renewable Energy

Budget Period 1 Accomplishments (concluded June 2019):

Detailed design of scaled demonstration unit including all subsystems

 Absorber kinematics and hull design:
 PTO and conversion chain design:
 Load management design:
 Mooring and anchor designed:
 Hydrodyn. and controls optimization Physical and electric infrastructure Physical mechanisms and actuation Soil conditions and cost optimized

Risk management, Installation, Maintenance and Operations planning

- 123 potential component/failure modes mitigation identified
- 110 potential activity failure modes and mitigation identified

De-risking project and technology

U.S. DEPARTMENT OF

ENERGY

Over 31 high and mid risks removed or mitigated

- PTO and conversion chain components thoroughly tested
- True to deployment scale setup
- Hardware-in-the-loop with validated hydrodynamic models
- 7 weeks of wave tank testing: SID, performance, and load management

Optimization and de-risking

Energy Efficiency & Renewable Energy

Budget Period 1 Accomplishments (concluded June 2019):

Detailed design of scaled demonstration unit including all subsystems

 Absorber kinematics and hull design:
 PTO and conversion chain design:
 Load management design:
 Mooring and anchor designed:
 Hydrodyn. and controls optimization Physical and electric infrastructure Physical mechanisms and actuation Soil conditions and cost optimized

Risk management, Installation, Maintenance and Operations planning

- 123 potential component/failure modes mitigation identified
- 110 potential activity failure modes and mitigation identified

Over 31 high and mid risks removed or mitigated

De-risking project and technology

U.S. DEPARTMENT OF

ENERGY

- PTO and conversion chain components thoroughly tested
- True to deployment scale setup
- Hardware-in-the-loop with validated hydrodynamic models
- 7 weeks of wave tank testing: SID, performance, and load management

Optimization and de-risking

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

(wave tank validated)

improved by average factor of 1.9 compared to Wave Energy Prize design (wave tank validated)

U.S. DEPARTMENT OF

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

(wave tank validated)

compared to Wave Energy Prize design (wave tank validated)

Future Work

ENERGY Energy Efficiency & Renewable Energy

- Budget Period 2 Setup
- 6 task groups with sub-tasks (device deployment and evaluation related)
- 6 upcoming Milestones: 2 operations/preparation related; 4 deployment related
- Device deployment Summer 2020
- Project concludes 2021: Decommissioning and deployment site remediation, Post-processing and data/report dissemination.
- Total BP2 budget remaining: \$2,528,206

Project Outcome

- Validation of Holistic Controls impact: High device performance and load management capabilities
- Demonstrate survivability and effective load management in large sea states
- Validate numerical and lab device modeling tools

Future Work

ENERGY Energy Efficiency & Renewable Energy

- Budget Period 2 Setup
- 6 task groups with sub-tasks (device deployment and evaluation related)
- 6 upcoming Milestones: 2 operations/preparation related; 4 deployment related
- Device deployment Summer 2020
- Project concludes 2021: Decommissioning and deployment site remediation, Post-processing and data/report dissemination.
- Total BP2 budget remaining: \$2,528,206

- Project Outcome

- Validation of Holistic Controls impact: High device performance and load management capabilities
- Demonstrate survivability and effective load management in large sea states
- Validate numerical and lab device modeling tools