Gene by environment considerations for bio-restoration

Christina R. Steadman & Shawn R. Starkenburg Bioscience Division, LANL

EERE BETO BioRestore Workshop September 25, 2019

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNS

LA UR 19 20878

The paradigm for understanding gene by environment interactions to control phenotype

Synthetic ecology: engineering biotic communities

Alternative Feedstocks

- Terrestrial restoration
- Create biotic communities with specific properties to maximize:
 - Yield/NUE
 - Stress tolerance
 - Remediation

(bio- phyto- phyco-)

... May require rational design of entire biotic community

...which requires expertise and tech in biotic and epi/genomics

Fredrickson Science 2015;348

Rationally Designed Microbial Assemblages

Prairie Cordgrass (Spartina pectinata)

Kim et al BioEnergy Res 2012

Bio-restoration of harmful algae blooms

- Aquatic restoration
- Harmful algae blooms rapidly proliferate in response to environmental triggers
- Restore water quality
 - Environmental contaminants
- Enhance soil health
 - Nutrient uptake
- Create feedstock for bioeconomy
 - Organism growth/development

Cell density (10⁶cells/ml) 10 10

2 4

10 12 14

6 8 Time (d)

Control

Delivering science and technology to protect our nation and promote world stability

> Christina Steadman crt@lanl.gov

Shawn Starkenburg shawns@lanl.gov

