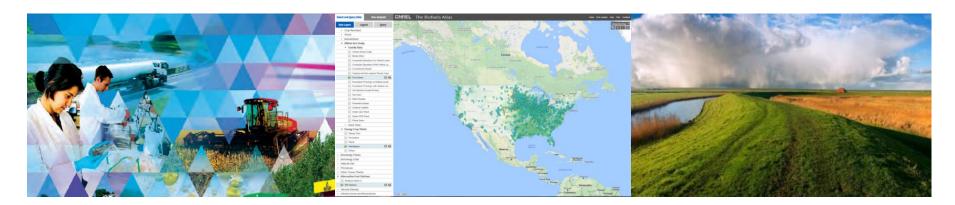


Bio-Restore Workshop: Background and Objectives

Bio-Restore Workshop

Lemont, IL


September 25-26, 2019

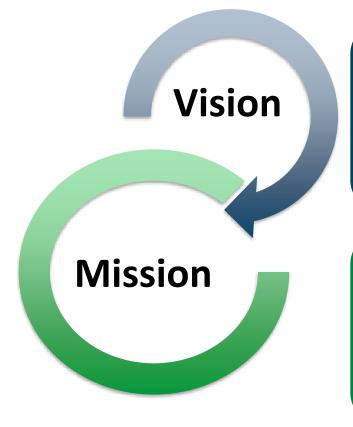
Kristen Johnson

Technology Manager Bioenergy Technologies Office U.S. Department of Energy (DOE)

Outline

- Workshop purpose
- Bioenergy Technologies Office (BETO)
- Bio-Restore concept
- Agenda for today and tomorrow
- Think Tank overview
- Break-out assignments

Workshop Purpose


 Objective: identify data and R&D needs to enable the use of terrestrial and algal biomass that provides environmental benefits while increasing feedstock supply for the bioeconomy

• Specific topics

- Using dedicated energy crops and other biomass sources to provide environmental benefits
- Algae technologies (wastewater treatment, direct bloom harvest, turf scrubbers, macroalgae)
- Quantification and valorization of ecosystem services
- Low-cost sensors and data management systems
- Integrating "bio-restore" biomass with supply chain needs

Bioenergy Technologies Office (BETO)

A thriving and sustainable bioeconomy fueled by innovative technologies.

Developing transformative and revolutionary sustainable bioenergy and bioproducts technologies for a prosperous nation.

BETO Reduces Technology Uncertainties and Enables Affordability Through R&D

Bioenergy Technologies Office's Critical Program Areas

Production & Harvesting

Feedstock Technologies

Develops technologies to costeffectively transform renewable carbon sources into high-quality, sustainable, and energy-dense feedstocks.

Advanced Algal Systems

Focuses on improving the productivity of algal biomass and enhancing the efficiency of cultivation and harvesting. **Conversion & Refining**

Conversion

Develops technologies to convert non-food feedstocks into biofuels, bioproducts, and biopower.

Conducts feedstock blend testing, separations, materials compatibility evaluations, and techno-economic analyses to focus research on highest impacts.

Advanced Development

Distribution & End Use

and Optimization

Aims to reduce technology uncertainty in bioenergy by integrating individual technologies into a system/process and provides vital knowledge fed back to research programs.

Crosscutting

Analysis and Sustainability

Supports program decision-making and develops science-based strategies to understand and enhance the economic and environmental benefits of advanced bioenergy.

BETO's Feedstock Technologies Program

Strategic Goal: Develop science-based strategies and technologies to costeffectively transform renewable carbon sources into high-quality, sustainable, and energy-dense feedstocks for biofuels, bioproducts, and biopower.

> Improve the Quality and Quantity of Renewable Carbon Feedstocks

Reduce Cost of Renewable Carbon Feedstocks

Strategies focus on improving the *efficiency* and *reliability* of harvesting/collection, storage, preprocessing, and transportation.

BETO funds R&D to strategically address lowering costs, improving quality, and increasing productivity of algal biomass.

BETO partners are developing sustainable, scalable algae cultivation systems and approaches to:

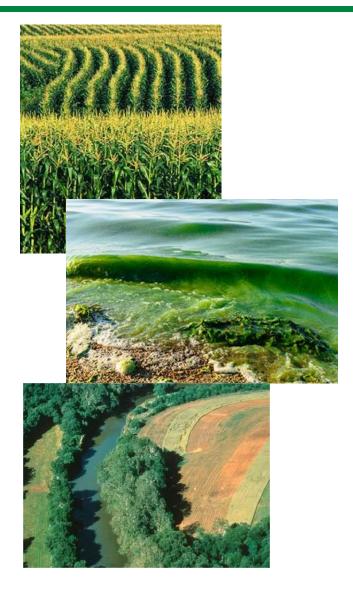
- maximize reliable annual biomass yield and quality, and
- minimize energy use, water consumption, land use, and nutrient additions.

Arizona Center for Algae Technology and Innovation testbed facility at Arizona State University

BETO's Analysis & Sustainability Program

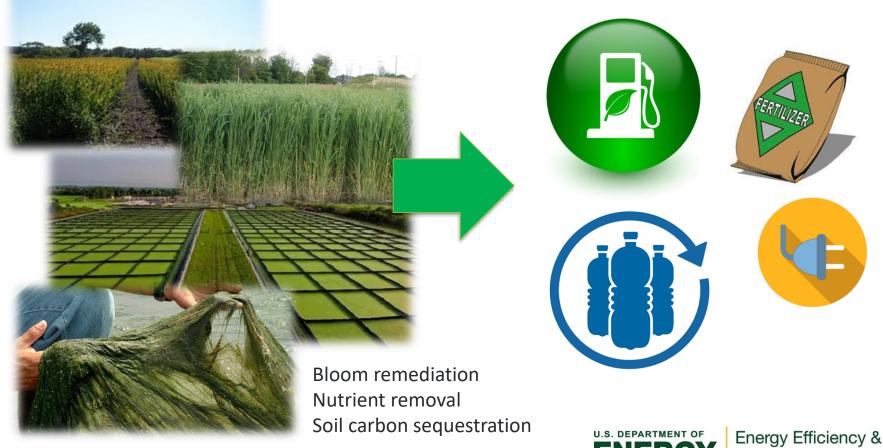
Strategic Goal: Develop science-based strategies to understand and enhance the environmental, economic and social benefits of advanced bioenergy and bioproducts relative to conventional energy systems.

Supports analysis and R&D focused on promoting benefits and minimizing negative impacts.



Identifies strategies for reducing costs by increasing efficiency and providing ecosystem services.

The Bio-Restore Concept


- The Challenge: Current land management practices contribute to environmental problems such as soil erosion, "dead zones" in aquatic systems, and habitat/wildlife disturbances.
- The Opportunity: Terrestrial and algal biomass has the potential to reverse and prevent environmental degradation while increasing feedstock supply for the bioeconomy.
- **The Impact:** Increased availability and reduced costs of bioenergy and bioproducts while cleaning up water resources, enhancing soil health, and providing other benefits.
- For the purpose of this workshop, "bio-restore" biomass refers to terrestrial/algal biomass that can be used for energy or products while providing environmental benefits (i.e., ecosystem services).

The Bio-Restore Concept

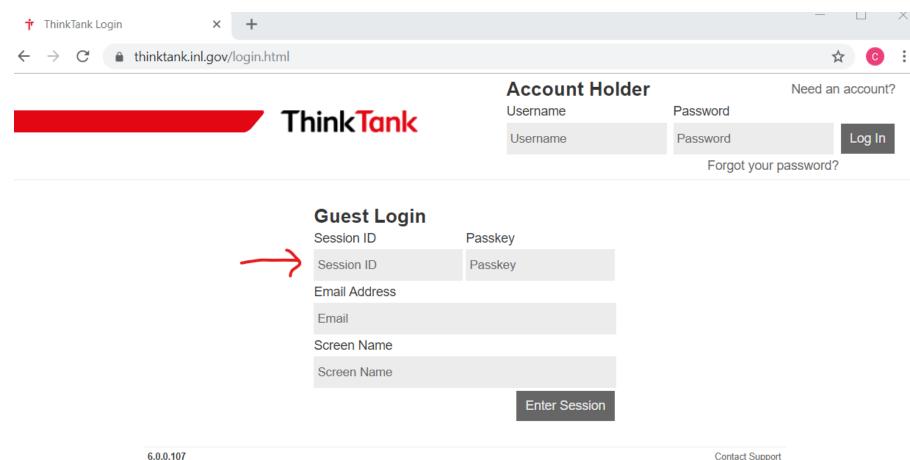
BETO is interested in how to leverage **ecosystem services** provided by algal and terrestrial biomass to reduce costs of production of **bioenergy** and **bioproducts**.

Renewable Energy

- Day 1
 - Topic overview presentations
 - State-of-technology presentations
 - 3x5 presentations
 - Break-out discussion on state-of-technologies, costs, and values of "bio-restore" biomass
- Day 2
 - Break-out discussion on data gaps, R&D needs, and success metrics

BETO's Mission

- Applied R&D program
 - Not policy, basic science, or demonstration/deployment
 - Not focused on genetic development or breeding of terrestrial biomass crops
- Focused on bioenergy and bioproducts
 - Interested in nexus between biomass that can be used for energy/products AND provides environmental benefits
- Goal- and target-driven
 - Break-out discussions will include questions on appropriate metrics and targets for "bio-restore" projects



Types of biomass relevant to BETO and this workshop

- Terrestrial: energy crops (herbaceous and woody) and other cellulosic biomass, waste biomass, or biomass that when produced/harvested provides environmental benefits
 - Not of interest: oilseed crops or crops generally grown for food/feed
- Algal: wastewater treatment algal biomass, algal blooms, algal turf scrubbers and attached growth systems, macroalgae
 - Not of interest: algae grown in artificial light conditions or other energy-intensive cultivation designs.

Think Tank Overview

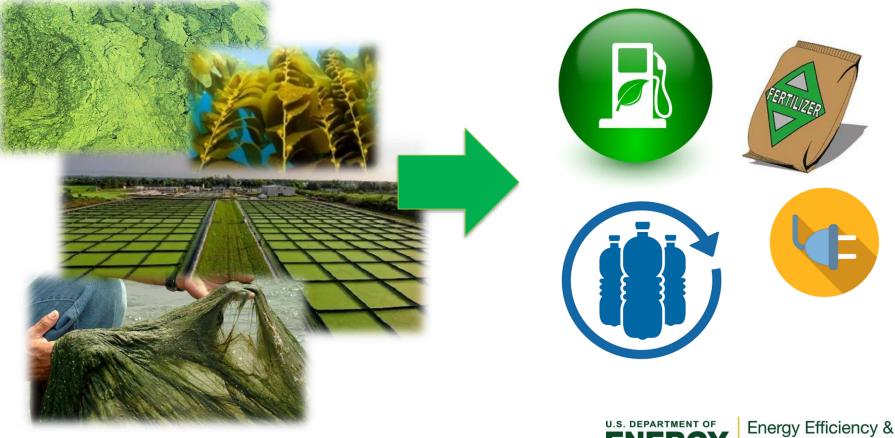
Contact Support

Think Tank Overview

201: Bio-Restore Algae Group		+•	4	Cost		
4	6 Cost What is the cost of algal biomass? 2:00pm	of algal biomass? •••	Designer	 WHAT ARE THE COSTS OF "BIO-RESTORE" ALGAL 	-•	- IDEAS
				BIOMASS?		What are the costs associated with harvesting algae blooms?
	🌣 前 🕞			1 What are the costs associated with harvesting algae blooms?	0	algue bloome.
4	7 R&D Opportunities How can BETO support lowering algal biomass costs? 8:30am	-•		2 What are the costs associated with harvesting purpose-grown "turf" algae?	0	
			Thinkers	3 What are the costs associated with harvesting purpose-grown macroalgae algae?	0	
4	8 Data & Information Needs How can BETO support closing data and information gaps? 9:30am		2	4 What are the costs associated with cultivating and harvesting WWT algae?	0	
		_	Navigation	5 What logistics costs must be considered in biomass transport?	0	
4	9 Success Metrics		ion	6 What are the costs of conversion	0 -	•
	How can we best measure progress for R&D Projects? Time Allowing	or =•		<i>Click here to add WHAT ARE THE COSTS OF "BIO-RESTORE" ALGAL BIOMASS?</i>	-•	Click here to add IDEAS

Thank you from the BETO Team!

Kristen Johnson – Analysis & Sustainability (A&S) Alicia Lindauer – Analysis & Sustainability Mark Elless – Feedstock Technologies (FT) Dan Fishman – Advanced Algal Systems (AAS) Camryn Sorg – supports A&S Art Wiselogel – supports FT Colleen Tomaino – supports AAS



Breakout Session Room Locations							
Session	Day 1	Day 2					
Algae	1416	1416					
Terrestrial 1	1404	1404					
Terrestrial 2	1405	1405					
Terrestrial 3	6172	1172					

Algal Systems

The program is interested in how to leverage algal **ecosystem services** such as **nutrient removal** and bloom remediation to reduce costs of production of algal **bioenergy** and **bioproducts**.

Renewable Energy