

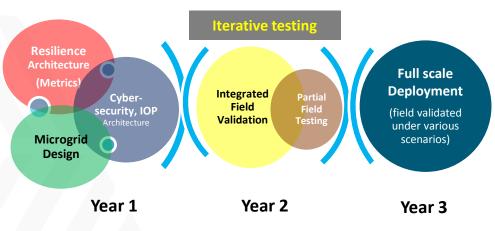
GRID MODERNIZATION INITIATIVE PEER REVIEW

GMLC 1.5.02 – Resilient Alaskan Distribution system Improvements using Automation, Network analysis, Control, and Energy storage (RADIANCE)

ROB HOVSAPIAN / MAYANK PANWAR / JOHN EDDY / TAMARA BECEJAC / DAISY HUANG

October 22–23, 2019 Washington DC

RADIANCE – Scope and Budget

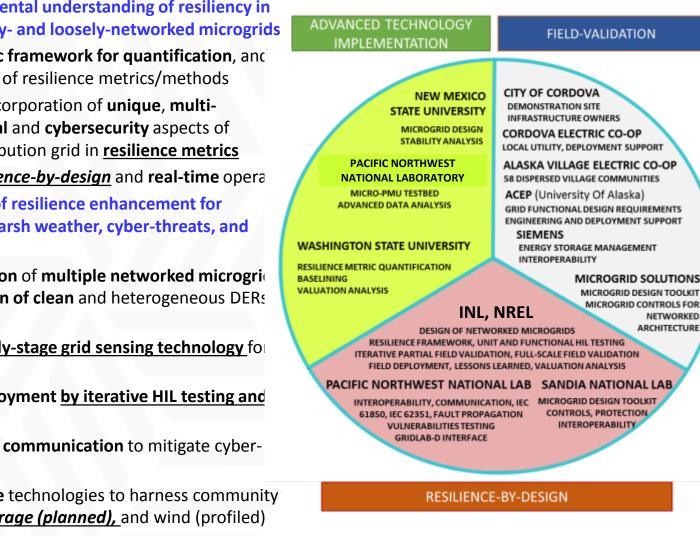

Objectives & Outcomes

- Regional field validation of resilience enhancement methods for distribution grids under harsh weather, cyber-threats, dynamic grid conditions using multiple networked microgrids, energy storage, early-stage grid technologies such as distribution-PMUs
- Iterative HIL testing, results from partial field deployment, leading to field validation, and leveraging GMLC 1.3.9 project to minimize deployment risk of modern power and cyber technologies, develop insights for practical use of metrics from GMLC 1.1 and new resilience metrics from this project
- Resilience by design using zonal approach in multiple looselyand tightly-networked microgrids
- **Lessons learned and roadmap** to develop networked microgrids as a resiliency resource in distribution grids

Technical Scope

- Resilience Metrics Framework for Design and Operation Develop and demonstrate practical use <u>of resilience metrics</u> for coordinated operation, design to minimize outages, financial losses
- Multiple Networked Microgrids in Distribution System <u>Leverage</u> <u>rotational</u> and virtual inertia of microgrids assets including <u>hydro</u>, diesel, energy storage, and <u>micro PMU-based sensing</u> to enhance resilience of the overall regional distribution network
- 3. Cyber-security Architecture and Rapid Prototyping of Controls Rapid prototyping of controllers as HIL and cyber-vulnerability testing in a <u>real-time</u> <u>cyber-secure environment</u>
- 4. Field Validation of Resiliency Enhancement Methods <u>Field validation of increasing resiliency</u> of the overall distribution system by leveraging resources from <u>multiple networked microgrids</u>

U.S. DEPARTMENT OF


Life-cycle Funding Summary (\$K)

FY17 & prior, authorized	FY18, authorized	FY19, authorized	FY20 authorized		
0	2,270	2,340	1,620		
PROJECT FUNDING					
Lab	Year-1	Year-2	Year-3		
INL/NREL	\$450K	\$500K	\$550K		
SNL	\$300K	\$300K	\$350K		
PNNL	\$250K	\$200K	\$200K		
Cost Share	\$300K	\$1070K	\$200K		
toma CMLC 1 5 02			10/22/19		

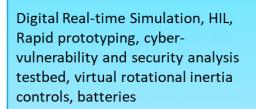
2

Goals and Objectives

- Cultivate a better fundamental understanding of resiliency in purview of multiple tightly- and loosely-networked microgrids
 - Develop a systematic framework for quantification, and **practical application** of resilience metrics/methods
 - Identification and incorporation of unique, multidimensional, physical and cybersecurity aspects of microgrids and distribution grid in resilience metrics
 - Application for resilience-by-design and real-time opera
- Regional field validation of resilience enhancement for distribution grids under harsh weather, cyber-threats, and dynamic grid conditions
 - Coordinated operation of multiple networked microgrie with high penetration of clean and heterogeneous DERs enhanced resilience
 - Micro-PMU an early-stage grid sensing technology for real-time controls
 - De-risking field deployment by iterative HIL testing and validation
 - Robust cyber-secure communication to mitigate cyberattacks
 - Evaluation of storage technologies to harness community \square level solar, hydro storage (planned), and wind (profiled)

NETWORKED

Demonstration Site – City of Cordova, AK


- 1MW/0.97MWh ABB-Saft BESS installed and commissioned in August 2019
- A new fiber optic network has been installed and commissioned between all generating stations and Eyak substation
- Advanced Metering Infrastructure and dispatchable electric boiler to be installed and commissioned in FY20
- Sensors for precise flow measurement at PowerCreek Hydro in design process (to be commissioned in FY20)

Project Team

Microgrid design (MDT – Microgrid Design Toolkit) and control testbed, PHIL Inverter testbed, Stability, energy storage, protection systems, field deployment

Sandia National

aboratories

Micro-PMUs and sensor placement t, fault propagation, communication networks testbed and protocols, IEC61850, IEC 62351, GridLab-D integration

Demonstration site, Engineering and deployment

University partner, rural microgrid research, microgrid and communication design, field deployment, utility interaction

LASKA VILLAGE ELECTRIC COOPERATIVE

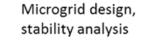
58 remote village communities in AK

Utility partner, engineering support, field deployment

SIEMENS

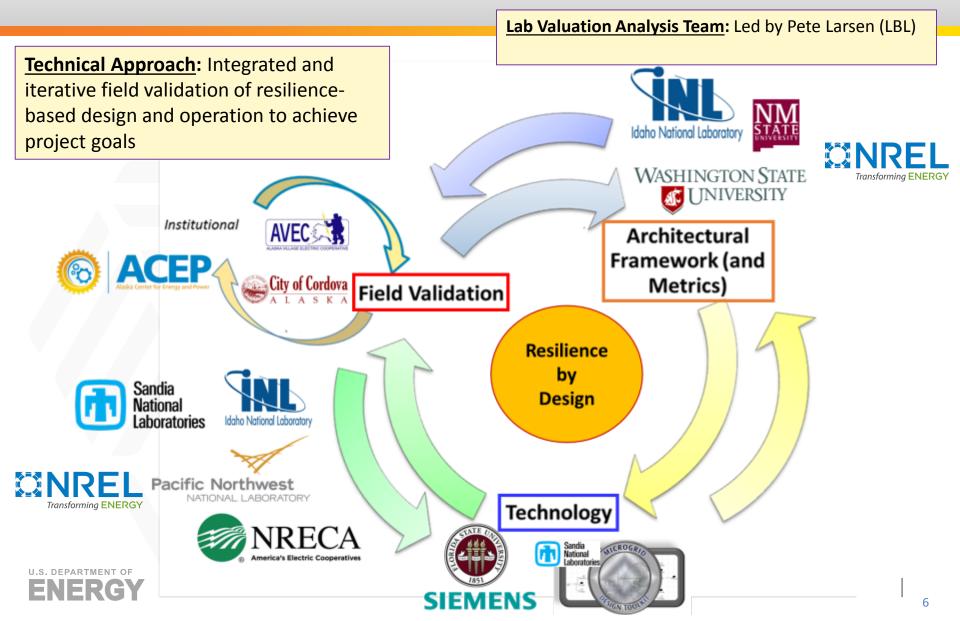
Energy Storage Management System

Rural electrification leadership, outreach

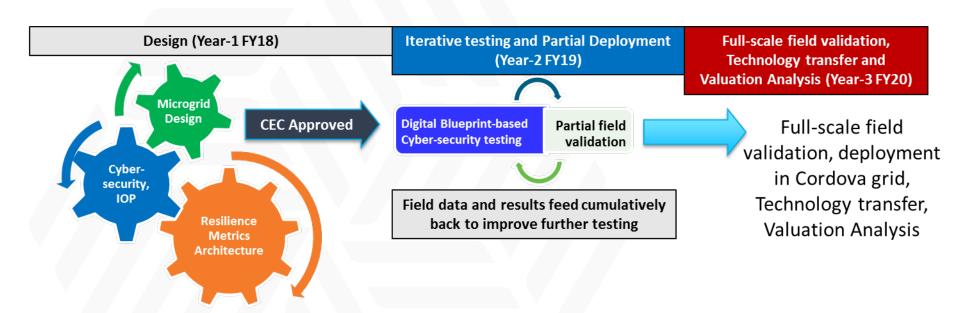

WASHINGTON STATE

Resilience metrics, valuation analysis, baseline

Microgrid design, controls vendor for networked architecture, protection



Protection design and testing


Approach

Approach

RADIANCE Approach

- In current phase of the project, three Integrated Project Teams (IPT) are focusing on
 - Cybersecurity Plan IPT
 - To include cyber and network information before RADIANCE.
 - To develop plans and policies for cyber-secure communication and access of the existing system, and future upgrades/additions of hardware and software.

Microgrid Control Design IPT

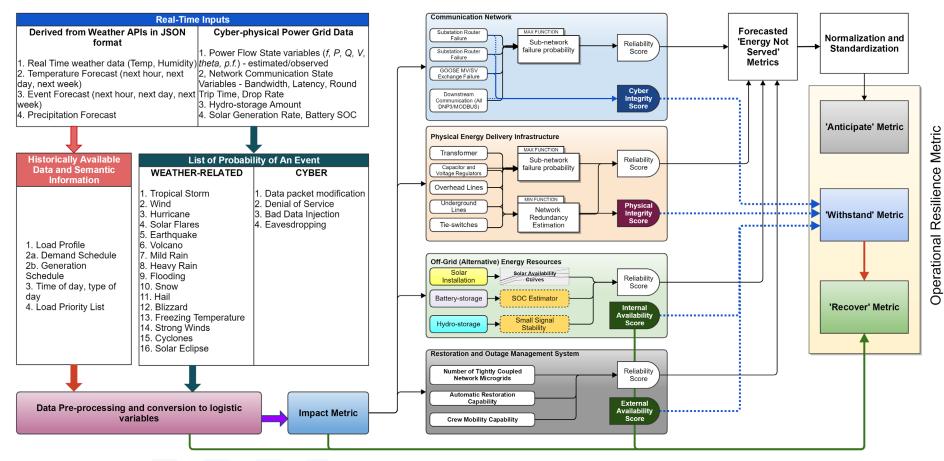
- Selection of microgrid vendor based on requirements choice selection matrix.
- Identification of local critical loads, layout and profiles for developing requirements.
- Utilize Sandia's MDT for specifying microgrid control design including physical aspects and cyber-threat scenarios.

Baseline of Cordova Distribution System IPT

- To establish a baseline system and quantify the baseline performance using metrics framework in line with LVAT.
- Utilize system survey and field measurements/data from PMUs, SCADA to develop baseline performance for comparison at the end of the project.

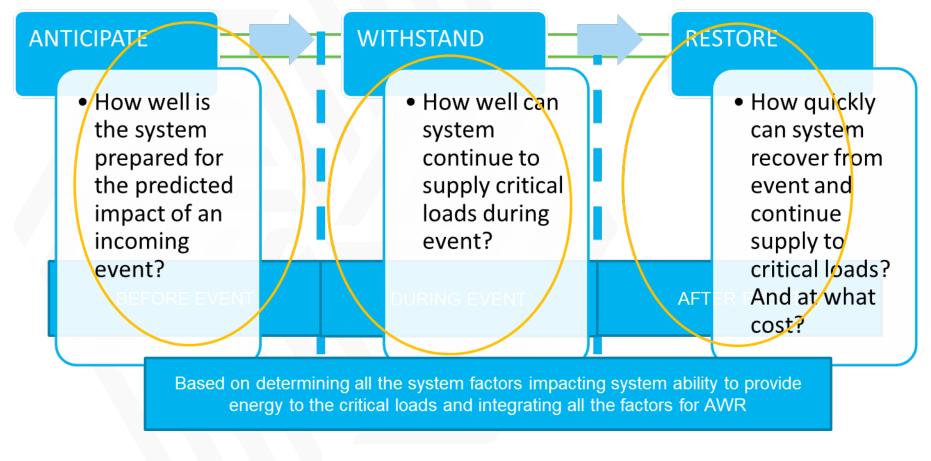
Testing IPT

- Coordinate development of the digital twin (digital blueprint) of CEC system in DRTS.
- Coordinate of unit testing with each IPT.
- Integration testing in field.

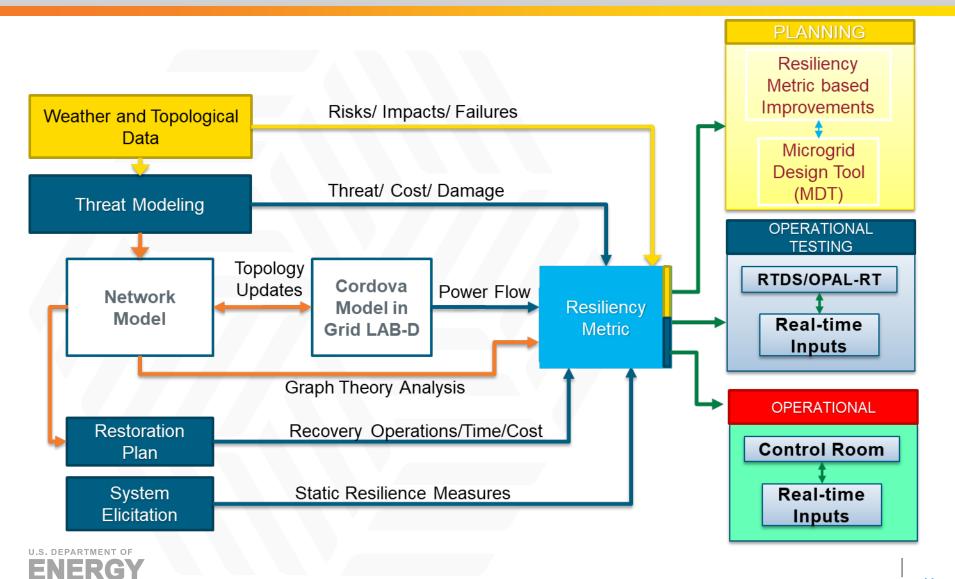


8

Approach – Resilience by Design



Operational Resilience Metrics Computation Flowchart


Multi-temporal Multidimensional Resilience Framework

Approach - Resilience Implementation Framework Overview

- Analysis of "Blue Sky" scenario.
- Provide historical data from prior threats, such as tsunamis, earthquakes, and extreme weather.
- Existing system SCADA data management.
 Automate collection and monitoring of SCADA data.
 - Establish a database for historical data in a Canary Lab environment for RADIANCE project.
 - Define historical dynamic events and provide associated data to RADIANCE team members for modeling and validation.
- Year-3 task: Support deployment and field validation.

- Analyze historical outage data using complex systems analysis tools.
 - Preliminary analysis complete. Behavior is isolated microgrid shows similar behavior to that of large national grid.
 - Master's student completed her thesis on this and will publish it in a technical journal.
- Determine which events are correlated with outages.
 - Analysis complete. Outages have not correlated with weather events since the transmission lines were buried.
 - Outages correlate with seasonal load.
- Define risk metric against which future changes to the grid may be measured, i.e.,
 - □ Risk metric has been defined.
 - \Box Next step is to test.

Represent the flow of messages/data between different aspects of the system Scenario-dependent traffic Specific data dependencies between entities Frequency of updates/data transfer rates

Utilize the model to determine communication requirements and feasible boundaries for hardware and software representations in the digital twin

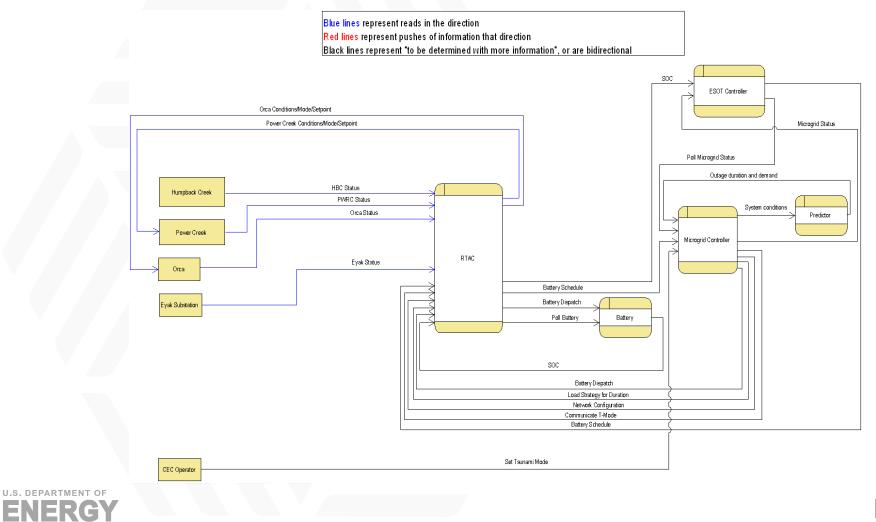
Utilize the model to determine where communication paths will need to be maintained in operations, and where alternatives may be useful

Utilize the model to determine important data for archiving

Baseline IPT – Data Model Progress & Next Steps

Current Progress

Refining initial models of data flow under scenarios (baseline, avalanche, tsunami) Working with Cordova Electric (CEC) and Electric Power Systems (EPS) to improve the representation Model the paths/data of the interactions accurately Incorporate proper names/terminology **Next Steps** Incorporate ESOT, microgrid controller, and uPMU details into the data flow Incorporate additional data characteristics


(data rate, storage rates, data criticality)

Baseline IPT – Data Model Overview

Example – Simplified Tsunami Representation

16

Cyber IPT – Progress and Status

- Completed CEC Cybersecurity Plan
- Completed Generic Cybersecurity Plan
- Cyber Vulnerabilities and Mitigations Related to Communication Protocols Found in Energy Delivery Systems (Task 4.4 deliverable).
- Document in final review and release process at PNNL.
- Started deployment of SDN Equipment in CEC for increased security from Internetlaunched attacks on VPN access.

RADIANCE Cybersecurity Plan: Generic Version

September 2019

MV McCarty | SR Mix | MR Knight | JP Eddy | J Johnson

Cyber IPT – Progress and Status

Micro-PMUs and PMU-based Event Detection

Cyber IPT – Progress and Status Cyber-Physical Testbed Overview

- Represents integrated architecture of emulation, simulation and, Hardware-in-the-Loop (HIL)
- Purpose To examine the cybersecurity of the Cordova microgrid, including:
- Analysis of cyber vulnerabilities of communication protocols
- Interoperability testing
- Identifying mitigation measures
- Focus is to identify cybersecurity vulnerabilities related to communication protocols and aspects such as communication latency
- Mitigation measures will be based on resilience metrics

Cyber IPT – Progress and Status Cyber-Physical Testbed

Current Progress

Updated the model in OPAL-RT simulator to match the latest PSLF model

- Topology
- Functional Mock-up Unit (FMU) for DEGOV1
- RT-LAB model expanded (more controls, and feedback loops)
- □ Added simulated uPMUs at each substation
- Included DNP3 and Modbus communication blocks

Next Steps

- □ Build I/O blocks and interface the simulator with the Relay and/or RTU
- Add the IEC 61850 communication blocks
- Finalize the Tsunami scenario and conduct the communication protocols vulnerability assessment
- Build and integrate the SCADA displays

Cyber IPT – Progress and Status OPC Server (SCADA) & OpenPDC

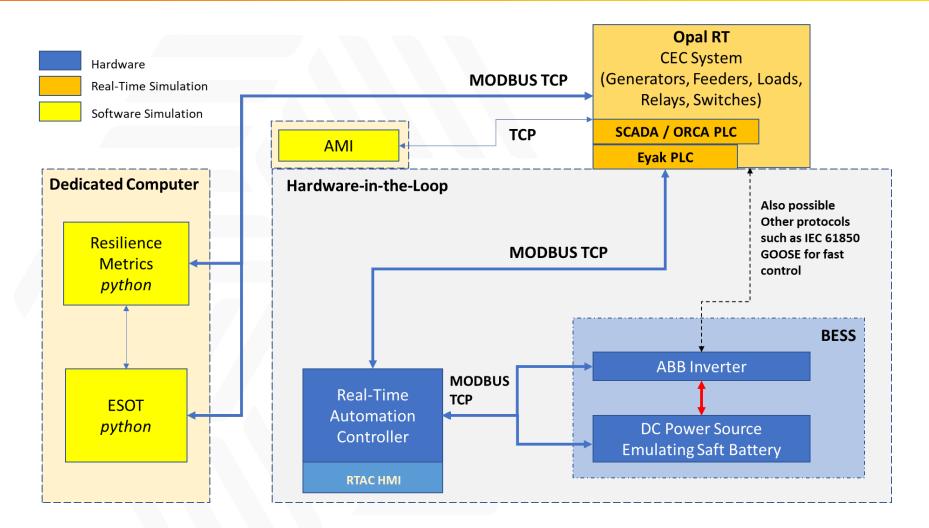
op me i aph Re esh Inte <u>DIRE</u>

Wissing Data

Real-time data feed

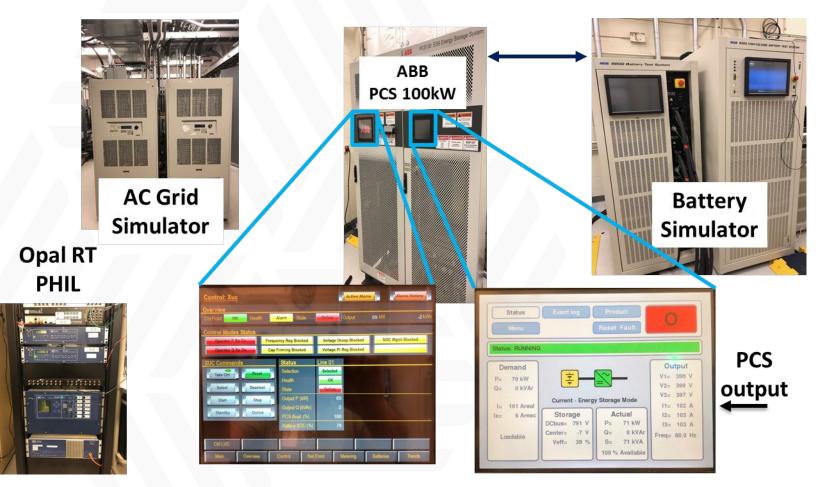
 Relay states controlled remotely via DNP3 and MODBUS

	SPC Ouick Client - Untitled *					
	Edit View Tools Help					
	2 🔛 🔡 d' 🔛 🔄 📕 🕲 🖻 I	4				
	Kepware.KEPServerEX.V6	-		Item ID	/ Data Value	Timestamp Quality U
	DataLogger			CRADIANCE DNP3 EYAK.EYAK, AuthCurrentUserNumber	Word 1	02:27:21.649 Good 1
				CRADIANCE_DNP3_EYAK.EYAKChannelResponseTimeout	DWord 1000	02:27:21.649 Good 1
				CRADIANCE DNP3 EYAKEYAK, DestinationHost	String 172.17.0.167	02:27:21.649 Good 1
	RADIANCE DNP3 EYAK, Communi-	ationSerialization		RADIANCE DNP3 EYAK, EYAK, DestinationPort	Word 20100	02:27:21.649 Good 1
	RADIANCE DNP3 EYAK, Statistics			RADIANCE_DNP3_EYAK.EYAK_DeviceRequestQueueDepth	DWord 0	02:27:21.649 Good 1
	RADIANCE DNP3_EVAK_System			CRADIANCE_DNP3_EYAK.EYAK_DeviceRequestTimeout	DWord 30000	02:27:21.649 Good 1
	RADIANCE DNP3 EVAK EVAK			GRADIANCE_DNP3_EYAK.EVAK_EventClass1PolIInterval	DWord 5	02:27:21.649 Good 1
	RADIANCE DNP3 EYAK, EYAK, Syste	m		RADIANCE_DNP3_EYAK.EYAK_EventClass2PollInterval	DWord 5	02:27:21.649 Good 1
	RADIANCE DNP3 HPC. Communic	ationSerialization		RADIANCE_DNP3_EYAK_EYAK_EventClass3PollInterval	DWord 5	02:27:21.649 Good 1
	RADIANCE DNP3 HPC. Statistics			RADIANCE_DNP3_EYAK.EYAK_IntegrityPolIInterval	DWord 3610	02:27:21.649 Good 1
	RADIANCE DNP3 HPC. System			RADIANCE_DNP3_EYAK.EYAKMasterAddress	DWord 1	02:27:21.649 Good 1
	RADIANCE DNP3 HPC.HPC			GRADIANCE_DNP3_EYAK.EYAK_Protocol	Byte 0	02:27:21.649 Good 1
	RADIANCE_DNP3_HPC.HPC_System			CRADIANCE_DNP3_EYAK.EYAKSlaveAddress	DWord 100	02:27:21.649 Good 1
				RADIANCE_DNP3_EYAK.EYAK_SourcePort	Word 0	02:27:21.649 Good 1
				RADIANCE_DNP3_EYAK.EYAK_TimeSyncStyle	Byte 1	02:27:21.649 Good 1
				CRADIANCE_DNP3_EYAK.EVAK.Ana Out 0	Double 0	02:55:54.097 Good 2 02:07:08.678 Rad 1
				CRADIANCE_DNP3_EYAK.EYAK.Ana Out 1	Double Unknown	
PDC Manager - Pacific-OPC-PC\Pacifi	c-OPC		- 0	RADIANCE_DNP3_EYAK.EYAK.EYAK-13M-3PHS-MVAR	Double 5.19818E-005	02:57:04.271 Good 16 02:56:49.231 Good 17
DDC 14				RADIANCE_DNP3_EYAK.EYAK.EYAK-13M-3PHS-MW	Double 0.00473737 Double 21.5069	02:56:49.231 Good 13 02:56:49.231 Good 13
penPDC Manager		Current Node: Default		RADIANCE_DNP3_EYAK.EYAK.EYAK-13M-APHS-AMPS RADIANCE DNP3_EYAK.EYAK.EYAK-13M-APHS-KVOLTS	Double 12.7182	02150349.231 Good 13 025654.249 Good 13
				RADIANCE_DNP3_EYAK.EYAK.EYAK-13M-APHS-KVOLTS	Double 12.7182 Double 59.9778	02:50:54:249 Good 12 02:57:04:271 Good 16
Inputs Outputs Actions Me	tadata Monitoring Reporting Syste	m		CADIANCE_DNP3_EFACETAK.ETAK-LSMPREQUENCT	Bool. 1	12:55:54.197 Good 2
				RADIANCE_DNP3_EFACEYAK_EYAK_CON-0025	Bool 1	0235354.097 Good 2
Real-time Measurements				RADIANCE DNP3 EYAKEYAKEYAK-CON-0019	Bool., 1	02:55:54.097 Good 2
tterval: 2 sec Last Refresh: 06:47:04.649	Status Fine Defenses	I Dicelar Cottines Caus Dicelar Cot	Hone I Land Direity Catting	RADIANCE_DNP3_EYAK.EYAK.EYAK.eCON-0121	Bool., 1	0215514.057 Good 2
RECT CONNECTED	2121021201000	Display seconds (save bisplay se	congeneoso creation decon	RADIANCE_DNP3_EYAK.EYAK.EYAKIND-1025	Bool 1	19:57:32.979 Good 2
OPAL-RT PMU Edit	60.04 OPAL-RT PMU-FO		Keal-time	RADIANCE DNP3 EYAK.EYAK.EYAKIND-1057	Bool 1	19:57:32.979 Good 2
OPAL-RT PMU DDI OPAL-RT PMU-AV1 251.034	BUDA OPALIKI PMIDING			RADIANCE_DNP3_EYAK.EYAK.EYAK-IND-0089	Bool 1	19:57:32.979 Good 2
				RADIANCE DNP3 EYAK.EYAK.EYAKIND-8121	Bool., 1	19:57:32.979 Good 2
OPAL-RT_PMU-AV2 251.034	60.02			RADIANCE DNP3 EYAK EYAK EYAK-LA-3PHS-MVAR	Double 0.00149638	02:56:59.256 Good 15
OPAL-RT_PMU-DF 0				RADIANCE DNP3 EYAK.EYAK.EYAK-LA-3PHS-MW	Double 0.00686936	02:56:49.231 Good 13
OPAL-RT PMU-DV1 1	Erequency			RADIANCE DNP3 EYAK.EYAK.EYAK-LA-APHS-AMPS	Double 31.9152	#2:56:59.256 Good 14
OPAL-RT PMU-DV2 1	3 60-3			RADIANCE_DNP3_EYAK.EYAK.EYAK-LA-APHS-KVOLTS	Double 12,7182	02:56:49.231 Good 13
OPAL-RT PMU-DV3 1	5			BRADIANCE_DNP3_EYAK.EYAK.EYAK-LAFREQUENCY	Double 59.9778	02:57:04.271 Good 16
OPAL-RT PMU-DV4 1				RADIANCE DNP3 EYAKEYAKEYAK-MT-3PHS-MVAR	Double 0.00180736	02:57:04.271 Good 15
OPAL-RT PMU-FO 59.978 Hz	59.98-			RADIANCE DNP3 EYAK.EYAK.EYAK-MT-3PHS-MW	Double 0.00567583	#2:56:59.256 Good 14
OPALIET PMULPA1 53.957 Degrees				BRADIANCE_DNP3_EYAK.EYAK.EYAK.MT-APHS-AMPS	Double 27.0486	02:56:44.224 Good 12
OPAL-RT PMU-PA2 138-321 Degrees				RADIANCE_DNP3_EYAK.EYAK.EYAK-MT-APHS-KVOLTS	Double 12.7182	02:57:04.271 Good 14
	59.96			RADIANCE_DNP3_EYAK.EYAK.EYAK-MTFREQUENCY	Double 59.9778	02:57:04.271 Good 16
OPAL-RT_PMU-PM1 12.35 Volts	17:10:13.882		17:10:16.315		Double 0.00120938	02:56:59.256 Good 15
OPAL-RT_PMU-PM2 0.305 Amps	ID Signal Reference	Time Tag Value	Unit	RADIANCE_DNP3_EYAK.EYAK.EYAK-NT-3PHS-MW	Double 0.00580683	02:56:54.249 Good 14
OPAL-RT_PMU-OF 251658240	OPAL-RT PMU: OPAL-RT_PMU-FQ	17:10:16.365 59.978	Hz 💥 🗠	RADIANCE_DNP3_EYAK.EYAK.EYAK.NT-APHS-AMPS	Double 26.9261	02:57:04.271 Good 14
OPAL-RT_PMU-SF 00000000 Hex	for young more than a set of	111010000		RADIANCE_DNP3_EYAK.EYAK.EYAK.NT-APHS-KVOLTS	Double 12.7182	02:56:49.231 Good 13
SHELBY Edit				RADIANCE_DNP3_EYAK.EYAK.EYAK-NTFREQUENCY	Double 59.9778	02:57:04.271 Good 16
			v			
		resh Interval: 2 sec				
	ID Statistic	Value	TimeTag			
	STAT:171 Data Quality Errors	0	06:46:55.616			
	STAT:179 Last Report Time	10:06.982	06:46:55.616			
	STAT:172 Time Quality Errors	0	06:46:55.616			
	STAT:178 Total Frames	614	06:46:55.616			
	CTAT/172 Davies Excess	0	06-46-65 616			

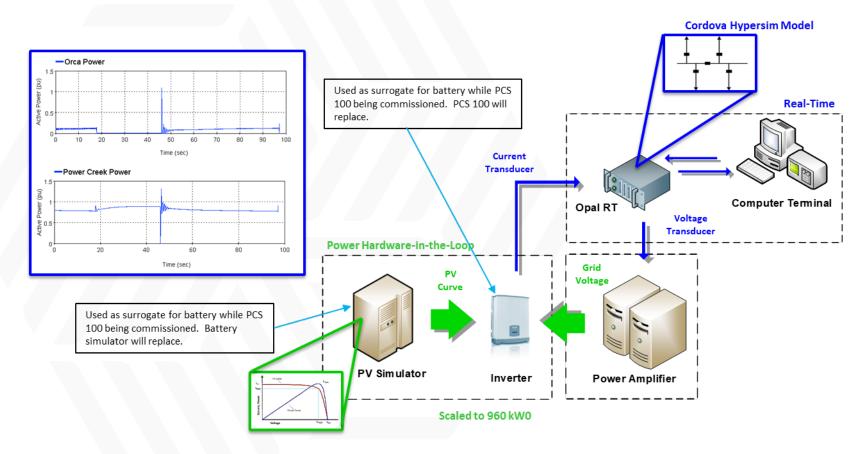

06:46:55.616

Follows the SCADA naming convention

Testing IPT – Status and Approach



Microgrid Design IPT – Status and Progress


Sandia DETL Equipment for Real Time Power Hardware-in-the-Loop Setup

Microgrid Design IPT – Status and Progress

Sandia DETL Equipment for Real Time Power Hardware-in-the-Loop Setup

Microgrid Design IPT – Status and Progress

Legend

Lake Ave

New Town

DAControlled Swild

TR3

Power

Creek Substation

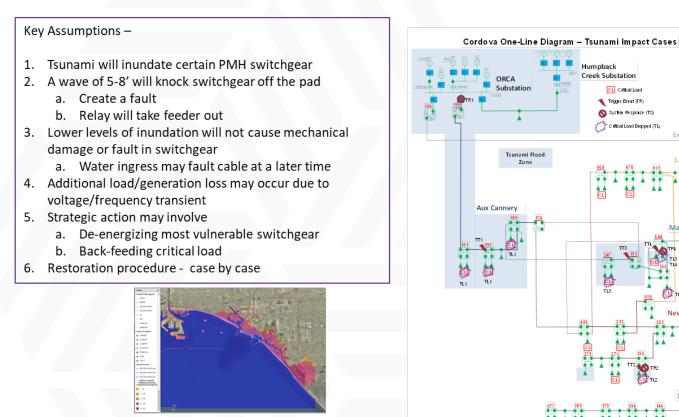
BESS

EYAK Substation

Humpback Creek Substation

CL Cittical Load

🚫 System Response (TS)


C ritical Load Dropped (TE

🔦 Trigger Brent (TR)

ORCA Substation

Tsunami Flood

Tsunami Scenarios developed for PSLF and Hypersim PHIL Models

FastMap2015 results for Tsunami for areas with minimum of 3' of inundation

Tsunami Warnings, Events and System Responses developed for PSLF and PHIL Models

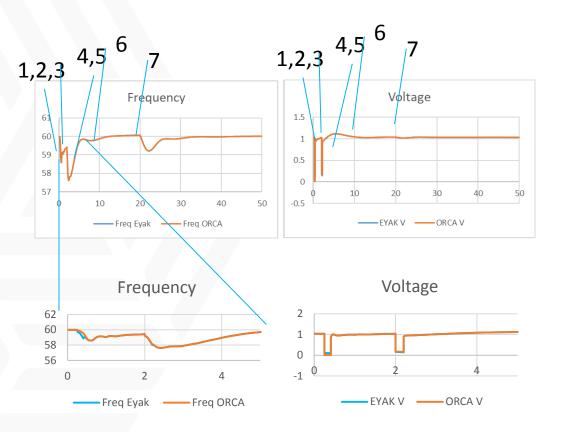
- 1. Low Impact Fault causes loads fuse to trip (TT2, TT4)
- 2. Medium Impact Fault causes Aux Cannery or Main Town to trip (TT1, TT3) or ORCA to be forced to shut down (TT5)
- 3. High Impact Fault causes ORCA main bus fault taking out, ORCA generation, Aux Cannery and Humpback Creek generation, and express feeder connection to Eyak Substation (TT6)
- 4. These tsunami trigger event scenarios have been put into both PSLF and Hypersim models for OPAL-RT

Emergency Warning Type	Trigger Event	System Automatic Response or Operator Response	Critical Load Dropped
Tsunami Warning	TT1 - Fault on OS593 (or OS191 or OS180 or feeder conductor)	TR1 - Relays trip Aux Cannery Feeder Breaker at ORCA SS	TL1 - OS191, OS593, OS180
Tsunami Warning	TT2 - Fault downstream of OS266	TR2 - OS266 fuse to loads trip	TL2 - OS266
Tsunami Warning	TT3 - Fault on OS193 (or OS247 or feeder conductor)	TR3 - Relays trip Main Town Breaker at EYAK SS	TL3 - OS193, OS195, OS247, OS644
Tsunami Warning	TT4 - Fault downstream of OS644	TR4 - OS644 fuse to loads trip	TL4 - OS644
Tsunami Warning	TT5 - ORCA substation flooding affects Diesel Generation	TR5 - Operators offload ORCA diesel generation to Hydros and BESS	TL5 - none if sufficient Hydro and BESS capacity exists
Tsunami Warning	TT6 - ORCA substation flooding causes fault on ORCA main bus (most severe contingency)	TR6 - Relays trip Aux Cannery Breaker and Express Breaker at ORCA SS; ORCA and Humpback Creek generation lost; Operators can try to bypass ORCA connection of Humpback Creek to the Express feeder to restore Humpback Creek generation	TL6 - ORCA, Humpback Creek generation; OS191, OS593, OS180 for Aux Feeder; Express Feeder

Microgrid Design IPT – Status and Progress

Example Tsunami event with results modeled in PSLF

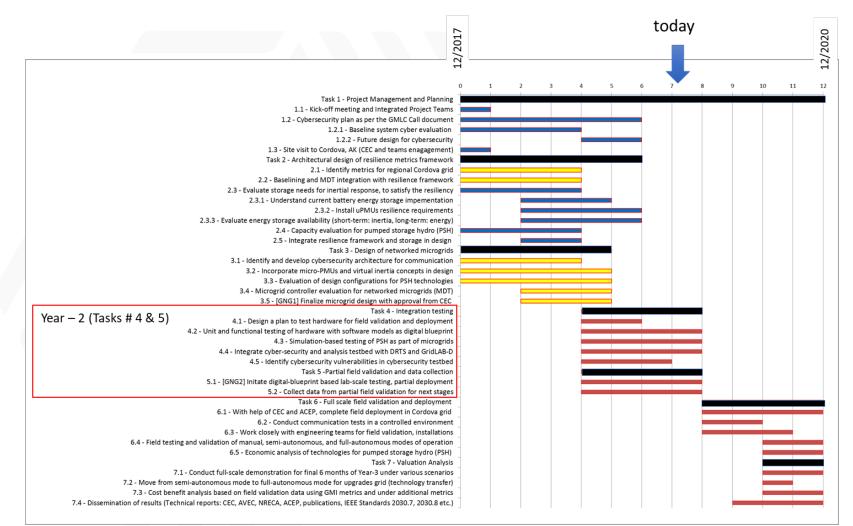
Purpose:


Provide disturbance results for validation of scenarios/models

Configuration:

Winter case with all Hydro on-line with diesel at ORCA

Disturbance Sequence:

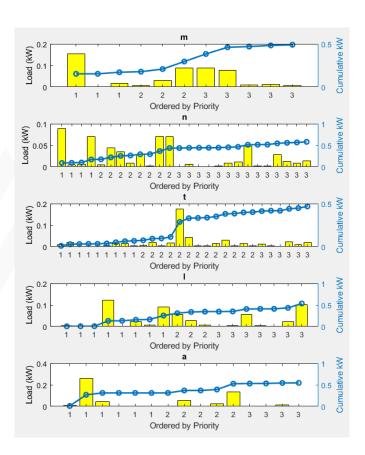

- 1. Fault at Canneries
- 2. Fault cleared- Load Lost at Canneries
- 3. ORCA diesel unit 7 trips
- 4. Downstream Fault on New Town Feeder
- 5. New Town Feeder Fault cleared by Fuse and Recloser at Eyak
- 13mile feeder trips (underfrequency 58 Hz 40~delay
- 7. Newtown feeder back-fed from Lake Avenue

Project Timeline

Project Timeline – Year–2 and Year–3

	Task 4 - Integration testing
Y2 -	4.1 - Design a plan to test hardware for field validation and deployment
	4.2 - Unit and functional testing of hardware with software models as digital blueprint
	4.3 - Simulation-based testing of PSH as part of microgrids
	4.4 - Integrate cyber-security and analysis testbed with DRTS and GridLAB-D
	4.5 - Identify cybersecurity vulnerabilities in cybersecurity testbed
	Task 5 -Partial field validation and data collection
	5.1 - [GNG2] Initiate digital-blueprint based lab-scale testing, partial deployment
	5.2 - Collect data from partial field validation for next stages
ſ	Task 6 - Full scale field validation and deployment
	6.1 - With help of CEC and ACEP, complete field deployment in Cordova grid
- 1	6.2 - Conduct communication tests in a controlled environment
	6.3 - Work closely with engineering teams for field validation, installations
	6.4 - Field testing and validation of manual, semi-autonomous, and full-autonomous modes of operation
va	6.5 - Economic analysis of technologies for pumped storage hydro (PSH)
Y3-	Task 7 - Valuation Analysis
	7.1 - Conduct full-scale demonstration for final 6 months of Year-3 under various scenarios
	7.2 - Move from semi-autonomous mode to full-autonomous mode for upgrades grid (technology transfer)
	7.3 - Cost benefit analysis based on field validation data using GMI metrics and under additional metrics
	7.4 - Dissemination of results
	(Technical reports: CEC, AVEC, NRECA, ACEP, publications, IEEE Standards 2030.7, 2030.8 etc.)
11.5	DEPARTMENT OF

Description	Criteria	Date
Finalize microgrid design with technical inputs, requirements, and final approval from CEC [GNG1 – Subtask 3.5]	Microgrid controller evaluation is completed in line with the technical requirements for networked microgrid operations incorporating energy storage, micro-PMUs, resilience framework, and infrastructure upgrades including communication network design. CEC approves the technical specifications and plans for integration of microgrid controller and system modifications.	Completed 12/11/18
Initiate digital blueprint-based lab-scale testing, and start partial deployment (with help from CEC) of micro-PMUs, other sensors, communication and controls in a selected portion of Cordova grid for testing of microgrid controller functionalities [GNG2 – Subtask 5.1]	Complete the plan for integration of various sensors, hardware equipment, software tools, and models to be tested in a real-time environment for field validation and deployment. Initiate partial field testing in Cordovan microgrids and collect data to iteratively improve the approach.	Completed 9/30/19



Description	Criteria	Date
Finalize microgrid design with technical inputs, requirements, and final approval from CEC [GNG1 – Subtask 3.5]	Microgrid controller evaluation is completed in line with the technical requirements for networked microgrid operations incorporating energy storage, micro-PMUs, resilience framework, and infrastructure upgrades including communication network design. CEC approves the technical specifications and plans for integration of microgrid controller and system modifications.	Completed 12/11/18
Initiate digital blueprint-based lab-scale testing, and start partial deployment (with help from CEC) of micro-PMUs, other sensors, communication and controls in a selected portion of Cordova grid for testing of microgrid controller functionalities [GNG2 – Subtask 5.1]	Complete the plan for integration of various sensors, hardware equipment, software tools, and models to be tested in a real-time environment for field validation and deployment. Initiate partial field testing in Cordovan microgrids and collect data to iteratively improve the approach.	Completed 9/30/19

Advanced Metering Infrastructure (AMI) Deployment

- ► AMI design and deployment planned for FY20.
 - In process to define requirements with help of NRECA, CEC, and vendor.
- Advantages
 - During contingencies: losing a whole feeder vs selective load shedding.
- Two approaches
 - Stacking AMI-based loads in order of priority and selecting
 - Grouping of AMI *Group-A, Group-B* etc. across feeders
 - Objective function based on priority that define weights
- Fast load shedding for stability and demand response as energy services, e.g., thermostatically controlled loads (TCLs).
- AMI management platform may provide some analytics to guide these decisions in real-time operation.

- In Year-2 of the RADIANCE project, the capabilities at each national laboratory was developed and aligned to minimize the risk of deployment in Cordova, Alaska.
- Developed cyber-physical security testbed, Power Hardware-in-the-Loop for Battery Energy Storage System (BESS), developed digital blueprint coding for Cordova Electric Cooperative microgrid, and Laboratory Valuation Assessment Team methodology was development in support of the GMLC 1.1 Metrics Analysis project.
- RADIANCE team supported OE-funded Sandia-led Battery Energy Storage project in Cordova, AK, and coordinated efforts by working closely with Sandia BESS Team for smooth integration of the BESS in RADIANCE and inputs for Microgrid Design.

- Cybersecurity plan developments: A "Cybersecurity Plan" was developed for CEC-specific data, and another generic version of the "Cybersecurity Plan" for NRECA and AVEC to share with their electric cooperative members as part of the project deliverables.
- Network upgrades for micro-PMU data collection, and microgrid network data was designed and completed as part of Year-2 activities.
- Year-3 focus will be the physical deployment of the microgrid per Year-2 design in the field and testing in the field.

Contact Information

Rob Hovsapian, Ph.D. National Renewable Energy Laboratory, Golden, CO 850-339-932, <u>rob.hovsapian@nrel.gov</u>

Mayank Panwar, Ph.D. Idaho National Laboratory, Idaho Falls, ID 208-526-3783, <u>mayank.panwar@inl.gov</u>

John P. Eddy, Ph.D. Sandia National Laboratories, Albuquerque, NM 505-284-1642, <u>jpeddy@sandia.gov</u>

Tamara Becejac, Ph.D. Pacific Northwest National Laboratory, Richland, WA (509) 372-6554, <u>tamara.becejac@pnnl.gov</u>

Daisy Huang, Ph.D. University of Alaska, Fairbank, AK 907-474-5663, <u>dhuang@alaska.edu</u>

Questions?

