

energy.gov/sunshot

TESTING OF A 1 MWe SUPERCRITICAL CO₂ TEST LOOP

Jeff Moore, Ph.D.

Southwest Research Institute (SwRI)

Sunshot Team

- To develop a novel, high-efficiency supercritical CO₂ (sCO₂) hot-gas turboexpander optimized for the highly transient solar power plant duty cycle profile
 - This sCO₂ turbo-expander design advances the state-of-the-art from a current Technology Readiness Level (TRL) 3 to TRL 6
- To optimize novel recuperator technology for sCO₂ applications to reduce their manufacturing costs
- The sCO₂ turbo-expander and heat exchanger will be tested in a 1-MWe sCO₂ test loop, fabricated to demonstrate the performance of components along with the overall optimized sCO₂ Brayton cycle
- The scalable sCO₂ turbo-expander and improved heat exchanger address and close two critical technology gaps required for an optimized concentrating solar power (CSP) sCO₂ plant and provide a major stepping stone on the pathway to achieving CSP at \$0.06/kW-hr levelized cost of electricity, increasing energy conversion efficiency to greater than 50%, and reducing total power block cost to below \$1200/kW installed

<u>Team</u>: SwRI, GE, KAPL, Thar Energy, Navy Nuclear Laboratory, Aramco, EPRI, US DOE

<u>Project</u>: 5-year, \$10 million program to develop & test an expander & recuperator for sCO₂ power generation from CSP

<u>Schedule</u>: Expander, recuperator, and test loop design complete

System targets:

- 10 MWe net module size
- 50% net thermal efficiency

Expander targets:

- ~14 MW shaft power
- >700°C inlet temp
- >85% aero efficiency
- Multi-stage axial

Component	T out <i>,</i> °C (°F)	P out, bar (psi)	Flow, kg/s (lb/s)	
Pump	29.22 (84.60)	255.0 (3698)	9.910 (21.85)	
Recuperator-Heat	470.0 (878.0)	252.3 (3659)		
Heater	715.0 (1319)	250.9 (3639)		
Expander	685.7 (1266)	86 (1247)		
Recuperator-Cool	79.58 (175.2)	84 (1218)	9.910 (21.85)	
PreCooler	10.00 (50.00)	83 (1204)		

Sunshot Turbine Design

4-Stage Axial Flow Design

management region

 Temperature gradient at shaft ends required due to dry gas seals

(Blue = 50°C, Red = 715°C) (Kalra, et. al, 2014)

• Long flexible rotor and high gas density makes rotordynamics challenging

Rotordynamic Prediction for First Critical Speed

Rotordynamic Experience Chart from Moore (2006) with Sunshot Turbine Rotor Added

40 MMBtu/hr (11.7 MW) Heater

	Recuperator Outlet/ Heater Inlet	Heater Outlet/ Turbine Inlet
Temperature	470°C	715°C
Pressure	251.9 bar	250.9 bar
Mass flow rate of CO ₂	8.410 kg/s	8.410 kg/s

- Staggered tube configuration
- Designed by SwRI and Thar
- Manufactured by Thar
- First Inconel 740H heat exchanger

- Sourced Printed Circuit Heat Exchanger (PCHE)from Vacuum Process Engineering (VPE) for Recuperator
- Plates are chemically etched and diffusion bonded in a large vacuum furnace.

VPE Recuperator on Stand

- 12 stage, 3600 rpm pump
- Provided by BHGE
- 80 to 250 bar at 15 kg/sec

- Assembly completed with no major issues
- All fits and seal clearances verified
- Rotor runout met specifications
- Axial end-play adjusted with shim packs
- Radial bearing clearances verified
- Thermal seal instrumentation added

- Turbine assembled and installed on test stand
- Connections made to turbine in this order:
 - Large piping
 - Small piping
 - Lube oil supply and drain
 - Instrumentation

Turbine Case Assembly

Test Loop Components

		Speed (rpm)	Turbine Inlet	Turbine Inlet	Turbine Exit
			Temp. °C (°F)	Pressure bar	Pressure bar
				(psi)	(psi)
1 st	Design	21,000	550°C	~200 bar	80 bar (1160
Point			(1022°F)	(3000 psi)	psi)
2 nd	Design	27,000	715°C	~250 bar	80 bar (1160
Point			(1319°F)	(3625 psi)	psi)

- SunShot
 - 27,000 rpm; 1,320F; 3,500 psi
 - 12 total turbine starts with 3 controlled shutdowns and 9 observed trips
 - 37.5 hours of turbine operation
 - Observed transients to determine how the loop performs to fast shutdowns to help with future designs
 - Observed necessary trips and how the loop operated after and how to bring everything back online
- FOCUS
 - Tested both thermals seals to similar operating conditions
 - 1020F; 21,000 rpm
 - Matched similar dry gas seal flows
 - Obtained thermal seal and case temperatures

Test Results – 27,000 rpm

27000 rpm

Heater at 1750F (954C)

6 Hour 715C Endurance Test

Thermal Seal Performance

Turbine Transients

- Two trips evaluated
 - Highest temperature trip after 1,320F was reached
 - Highest pressure trip after 27,000 rpm was reached
- High temperature trip
 - Settle pressure is reached in less than 10 seconds
 - Dry gas seal flow still buffering turbine seals. Turned off after 30 minutes and turbine section vented

- Turbine performance met mechanical and performance objectives.
 - Achieved design temperature of 715C, design speed of 27000 rpm, and near design pressure of 250 bar.
 - Highest temperature SCO₂ turbine to date.
 - Thermal seal maintained acceptable dry gas seal operating temperature with near linear profile.
 - Vibration well less than 0.5 mils with no signs of instability
 - Low critical speed response (good bearing damping and balance)
 - Good thrust balance and low thrust bearing temperature
 - Radial bearing temperatures low following modification
 - Many shutdown transients tolerated
 - Some leakage experienced out case joints due to loss of bolt preload
 - Being addressed with single piece case design with STEP
 - Modified dry gas seal panel maintained warm seal gas preventing dry ice formation

Challenges with 700C Plant Design

- 700C yields greater efficiency than 550C but requires advanced nickel alloys for the hot section
- Material strength is creep limited above 600C
- Piping Materials
 - 316 stainless (\$8/lb) (up to 600C)
 - 347 stainless (\$9/lb) (up to 600C)
 - P91 (9 % chromium, 1 % molybdenum) (\$6/lb) (up to 450C due to spalling at higher temperatures)
 - IN625 (\$45-60/lb 8" and up) (up to 650C) (age hardening occurs above 650C)
 - IN740H (\$36/lb 8-10" from Special Metals) (up to 800C)
- Forging and bar stock costs:
 - IN 718 (\$36/lb)
 - Waspalloy (\$40/lb)
 - Nimonic 105 (\$47/lb)
 - Haynes 282 (\$19) (bar)
 - IN740H (\$22/lb) (bar)
- Inconel 740H primary heater and interconnecting piping required to avoid age hardening of IN625 above 650C.

RCBC Cycle Efficiency vs. Turbine Inlet Temperature

Dostal, MIT-ANP-TR-100, March 2004

The authors would like to thank...

- Office of Energy Efficiency and Renewable Energy (EERE) within the U.S. Department of Energy
- General Electric
- Thar Energy
- Aramco Services Co.
- Fluor Marine (Navy Nuclear Laboratory)
- Electric Power Research Institute (EPRI)

for providing guidance and funding for this research.