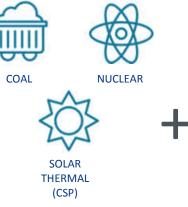

DOE Research and Development on sCO₂ Power Cycles

Dr. Avi Shultz Program Manager Solar Energy Technologies Office

energy.gov/solar-office

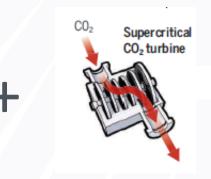
DOE sCO₂ Workshop October 31-November 1, 2019 National Renewable Energy Laboratory, Golden, Colorado


Next Generation CSP will Leverage Next Generation Power Cycles

Advantages of the sCO₂ Brayton Cycle:

- Higher Efficiency (50% at TIT of 720 °C)
- Compact Components
- Smaller Turbine Footprint (by a factor > 10)
- Reduced Power Block Costs
- Amenable to Dry Cooling
- Scalability (Sub 100 MW)
- Operational Simplicity (No Phase Change)

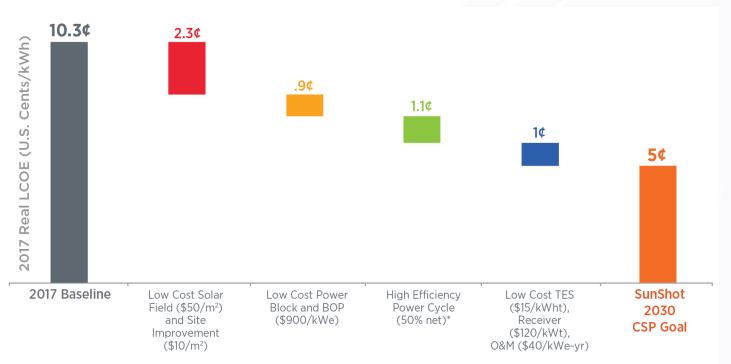
Thermal Energy Storage + sCO₂ Power Cycles


Thermal Resource Limitations:

- Difficult to modulate heat generation from nuclear fission
- Ramping coal boilers significantly reduces lifetime
- Solar thermal is a variable energy resource

Thermal Energy Storage:

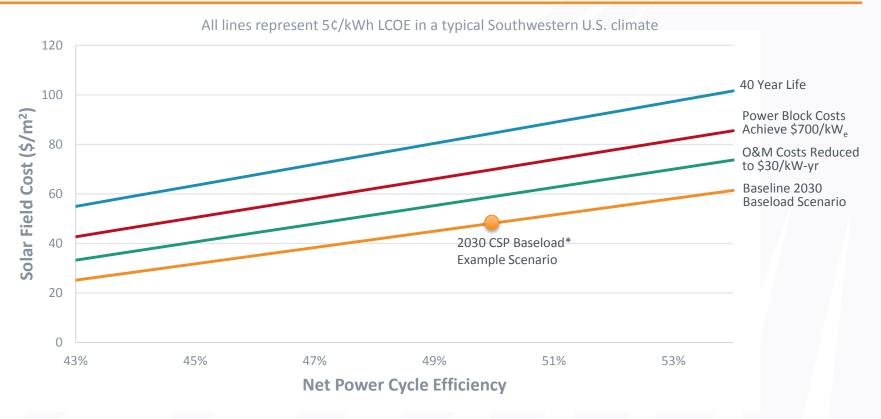
- **On-demand**, dispatchable energy generation
- Increased reliability due to buffering of variations in primary energy resource
- Technology readily scales to long duration (≥ 10 hours)



sCO₂ Power Cycles:

- Readily scalable to < 100 MW without significant loss in efficiency for improved flexibility and siting
- Similar or higher efficiency than steam cycles
- Compact components and lower capital cost for the same power output
- Much more amenable to dry cooling than conventional power cycles

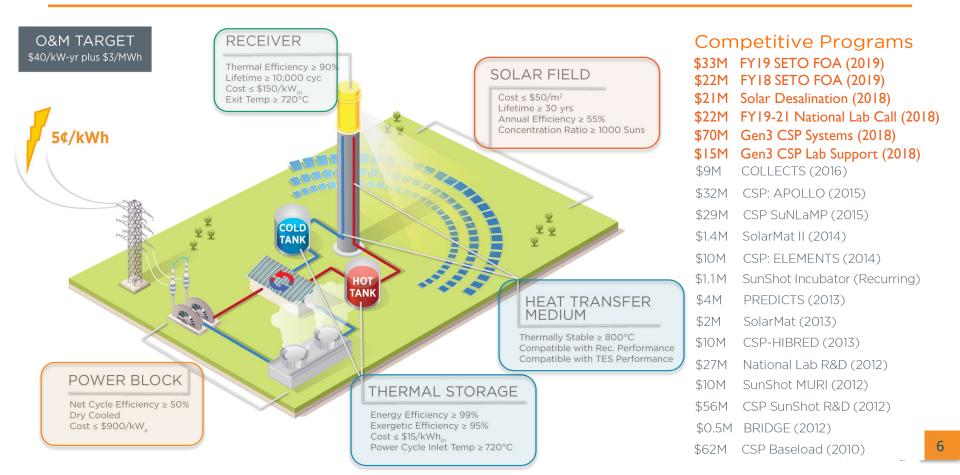
A Pathway to 5 Cents per KWh for Baseload CSP



*Assumes a gross to net conversion factor of 0.9

energy.gov/solar-office

Pathways to Achieving SunShot 2030 Goals



*Baseload power plant is defined as a CSP plant with greater than or equal to 12 hours of storage

5

U.S. DEPARTMENT OF

CSP Program Technical Targets

SETO sCO₂ Power Cycle Portfolio by Category

CATEGORY	PROJECT TITLE	PRIME
Turbomachinery	Compression System Design and Testing for sCO ₂ CSP Operation	GE
	Development of an Integrally-Geared sCO ₂ Compander	SwRI
	High-Temperature Dry-Gas Seal Development and Testing	SwRI
	Gas Lubricated Bearings for Drivetrain in sCO2 Cycle	GE
Materials	Fabrication and Application of High Temperature Ni-Based Alloys	EPRI
	Development and Testing of a Switched-Bed Regenerator	UW-Madison
Other Components	sCO ₂ Power Cycle with Integrated Thermochemical Energy Storage	Echogen Power Systems
Other Components	Additively Manufacturing Recuperators via DMLM and Binder Jet Technology	GE
	Development of a High-Efficiency Hybrid Dry Cooler System	SwRI
Technoeconomics	Cycle Modeling, Integration with CSP, and Technoeconomics	NREL

Pilot Plants and pre-FEED Studies

• **\$90.4 M** with partners GTI (STEP Project), GA Tech, Echogen, 8 Rivers, and Key Logic

Oxy Fuel Combustion for Direct Fired cycles

• **\$9.3 M** with partners including SwRI, GA Tech., UCF, Combustion Research & Flow Tech., and Cascade Technology

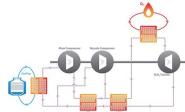
Modular Hybrid Heat

• **\$1.5 M** with partners SwRI, GA Tech., UCF, Combustion Research and Flow Tech. Inc, and Cascade Technology

Turbines, Recuperators, Materials Research

• \$19.3 M with partners GE, Altex, Combustion Research and Flow Tech. Inc,Thar and ORNL Leveraging investments in SCO2 power cycles to realize:

- More efficient coal boilers,
- Power cycles optimized for carbon capture,
- Energy storage,
- Waste heat recovery, and
- Modular SCO2 power cycles



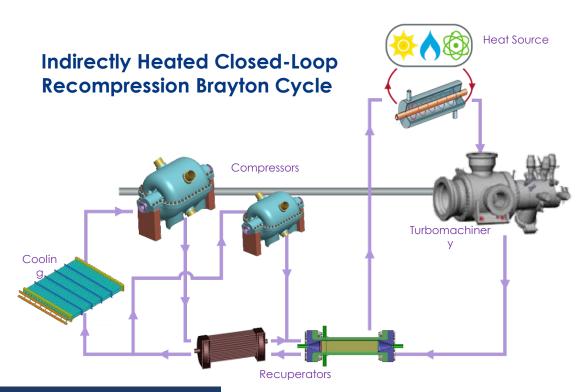
Fossil Energy Collaboration in sCO2

Coal FIRST (Flexible, Innovative, Resilient, Small, and Transformative)

- Currently funding two projects at >\$1M for pre-FEED studies.
 - Supercritical CO2 Power Cycle Integrated with Energy Storage with (Echogen Inc. Systems
 - Direct-fired Supercritical Carbon Dioxide Power Cycle with 8 Rivers Capital
- Pre-FEED with MI National Guard Fort Custer to provide 7.5 MW nominal size power plant
 - Plant will provide reliable source to base and dispatch rest of power to Consumer Electric's grid in Michigan
 - Solar Inc. turbine with supercritical CO2 cycle to recover heat
 - Overall efficiency is expected to exceed 50%
- National Lab Collaborations between NETL and other labs for
 - Providing comprehensive systems integration packages that include "all-of-the-above" strategy
 - Renewable energy and base load generation integration

Source

NFTI



energy.gov/fe

DOE sCO₂ Crosscut Initiative: STEP Facility

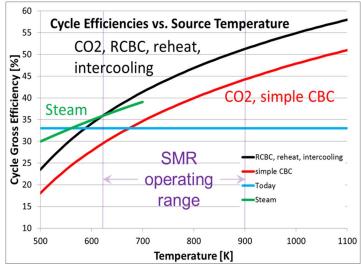
10 MW_e STEP Pilot Facility

- Demonstrate models, controls, instrumentation, etc.
- Resolve issues common to
 multiple potential heat sources
- Facility Capabilities
 - Reconfigurable
 - 700°C operation
 - 300 bar
- Explore:
 - Operability
 - Cycle configuration
 - Component performance

Project status: Major equipment on order; power cycle building under construction. Testing planned for 2021.

energy.gov/fe

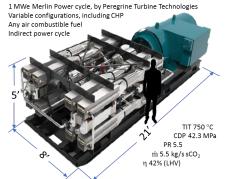
Office of Nuclear Energy - STEP R&D & Energy Conversion


STEP R&D Program

٠

- Activities focused on reducing technology risk, and component development
- Established 8 test configurations (Development Platforms):
 - 1 MWe Test Article, Heat Exchanger (SEARCH), Particle Imaging Velocimetry (PIV), Seals, Bearings, Turbcompressor (Core), Dry Heat Rejection (Tall Loop), Parallel Compression

ART Energy Conversion Team focuses on Sodium Fast Reactor Application


- Technology Roadmap/Project Management Plan/System Engineering Model completed
- Commercialization of the sCO₂ system by 2030
- Operating Recompression Closed Brayton Cycle (RCBC) at a turbine inlet of 550C (→ 700+C)
- Development of Intermediate Sodium to CO₂ Heat Exchanger (Primary Heat Exchanger)
 - Sodium Drain, Fill, Plug in PCHE and Sodium/CO₂ interactions
- ART Engages Industry to Advance TRL of Components HTGR and MSR (550C & 750C)
 - Federal Biz Ops (FBO) announcement to establish CRADA Lab & Industry collaborations

Technical Accomplishments

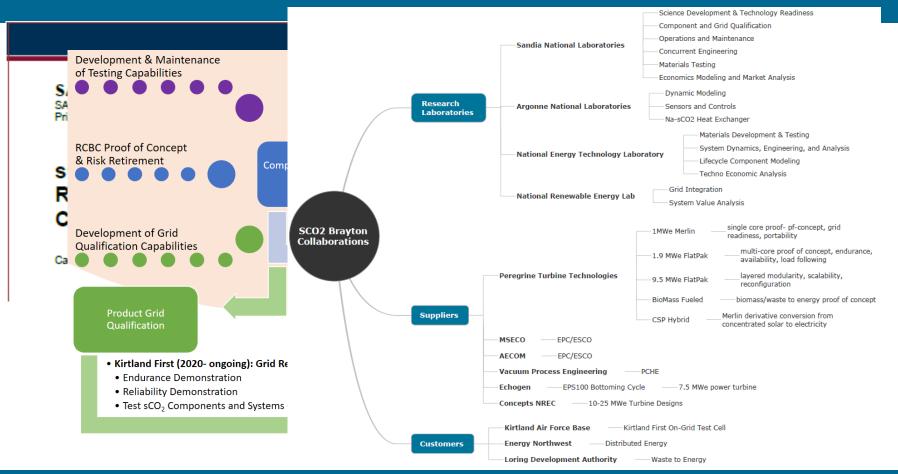
Turbomachinery

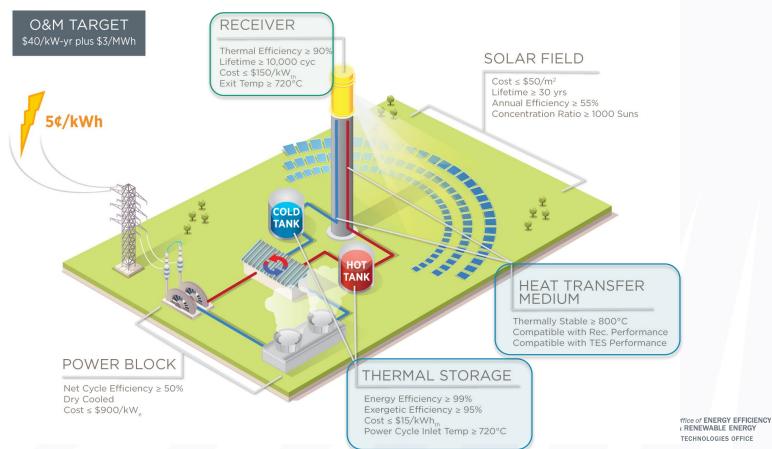
- 1 MWe Test article redesigned and initial testing completed
- Model and validation of turbo-machinery dry gas seals and hybrid gas bearings completed

Systems Analysis & Integration

- Plant Dynamics Code (PDC) for sCO₂ developed; validation ongoing
- Testing and data from RCBC sCO₂ integrated recompression loop

Heat Exchangers


 ASME-qualified manufacture of diffusionbonded, printed circuit heat exchangers


Materials

- Built high-temperature/pressure sCO₂ autoclaves at the SNL Materials Test Facility
- ASME Inconel 740 Code certification at 800 C for non-nuclear application
- Completed sCO₂ oxidation and corrosion tests for validation models
- Completed successful model for predictive impacts on corrosion, creep, and alloy fatigue life

Sandia – sCO₂ Roadmap for NE Applications

CSP Program Technical Targets

energy.gov/solar-c

Y 14

Gen3 CSP: Raising the Temperature of Solar Thermal Systems

Concentrating Solar Power Gen3 Demonstration Roadmap

Mark Mehos, Craig Turchi, Judith Vidal, Michael Wagner, and Zhiwen Ma National Renewable Energy Laboratory Golden, Colorado

Clifford Ho, William Kolb, and Charles Andraka Sandia National Laboratories Albuquerque, New Mexico

Alan Kruizenga Sandia National Laboratories Livermore, California

NEEL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency of Renerable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renevable Energ Laboratory (NREL) at www.rels.gov/publication.

Technical Report NREL/TP-5500-67464 January 2017

Contract No. DE-AC36-08GO28308

http://www.nrel.gov/docs/fy17osti/67464.pdf

15

energy.gov/solar-office

Gen3 CSP: Raising the Temperature of Solar Thermal Systems

Total federal funds awarded in 2018: \$85,000,000 over 25 projects in 3 Topics:

- **Topic 1**: Integrated, multi-MW test facility
- **Topic 2A**: Individual Component Development
- **Topic 2B** and **National Lab Support**: Cross-cutting Gen3 Research and Analysis

16

Gen3 CSP Topic 1 Awardees

DOE Award (P1-2): \$9,464,755

NATIONAL RENEWABLE ENERGY LABORATORY

DOE Award (P1-2): \$8,067,661

FrBraytonEnergy

DOE Award (P1-2): \$7,570,647

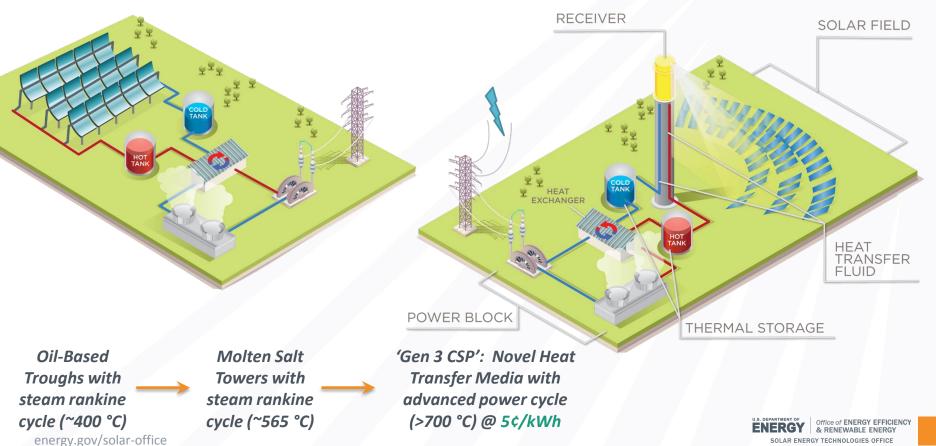
COLLECT		R THERMA TRANSPO		2 I KANSFE		POWER CYCLE
SOLID MEDIA	 Thermal Efficiency: Particle Loss Flow Velocity Control and Monitoring 	 Reliability Mechanical and Thermal Efficiency Scalability Insulation 	 Charging and Discharging Particle loss, Efficiency, Scalability 	 Particle Attrition Optimized Performance Character 	 Low Cycle Fatigue Particle Mass Flow Control Ramp Rates & Transients 	
MOLTEN SALT	 Thermal Conductivity Thermal Stability Tube Strength and Durability 	 Pipe Material Compatibility Freeze Recovery Pumps Valves Seals Leak Detect 	 Corrosion Behavior Chemistry Monitoring and control Tank Cost 	 Characterize Material Properties Cost / Supply Chain 	 Material Compatibility w/ salt & CO₂ Freeze Protection Thermal Ramp Rates 	
GAS	 High Pressure Fatigue Absorptivity Control and Thermal Loss Management 	 Recirculator Cost & Operating Power Large Pipes High Cost 	• Storage Concept not Determined	 Low Thermal Conductivity Low Heat Capacity 	 Requires High Area Multiple Heat Exchangers Cascading Temperature 	

energy.gov/solar-office

SOLAR ENERGY TECHNOLOGIES OFFICE

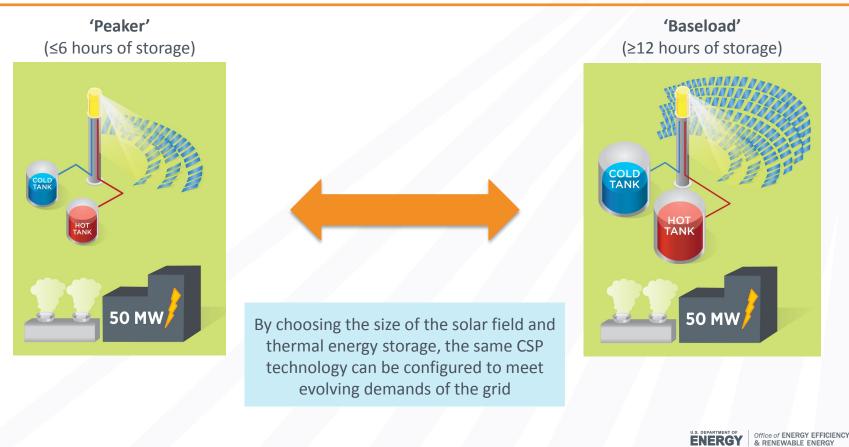
& RENEWABLE ENERGY

17

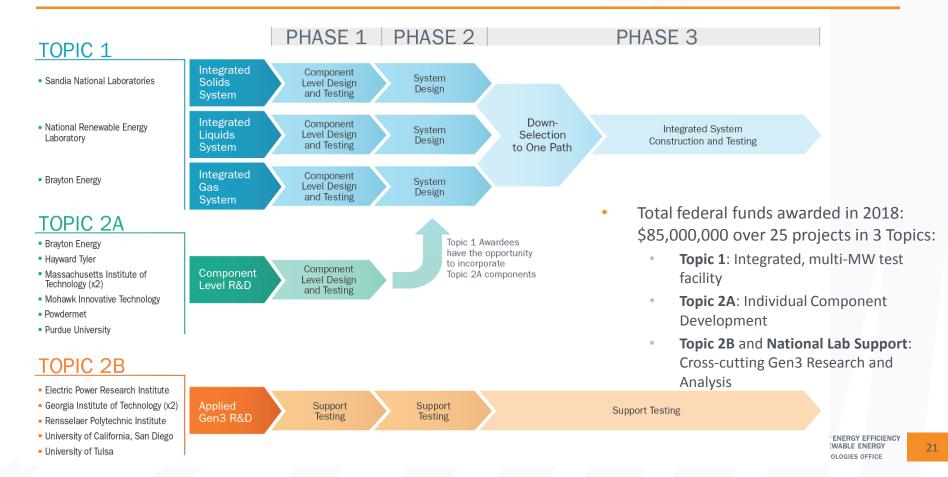

Questions?

Avi Shultz

energy.gov/solar-office

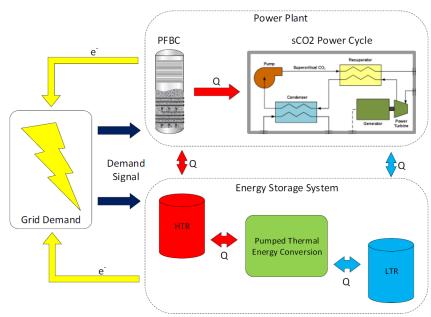

avi.shultz@ee.doe.gov Program Manager, CSP Solar Energy Technologies Office

CSP with Storage is Solar Energy On-Demand


19

CSP: Flexible Designs for an Evolving Grid

TECHNOLOGIES OFFICE

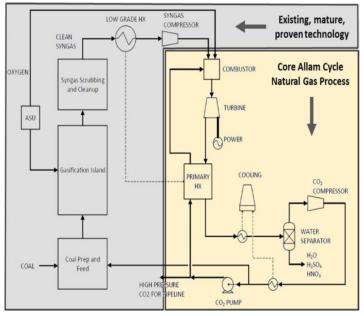

Gen3 CSP Awardees

Echogen Power Systems

- Advanced, modular coal combustion technology with high-efficiency sCO2 power block and combined electrical / thermal storage technology
- Air-fired PFBC based on DOE-funded oxy-PFBC project
- Recompression Brayton Cycle with potential for mid-temperature heat addition
- Turbine-driven compressors
- Electro-thermal energy storage-system charged by motor-driven heat pump cycle-System generates electricity by reversing process
- PFBC adaptable to oxy-combustion
- Air-fired PFBC compatible with post-combustion
 Teagagetenebteschoology Institute, EPRI, Louis Perry Group

89243319CFE000022, Echogen Power Systems (DE), Inc., Timothy J. Held, 234-542-4379, theld@echogen.com

PFBC / sCO_2 / ETES plant concept


energy.gov/fe

Coal FIRST Project: Direct-fired Supercritical Carbon Dioxide Power Cycle

8 Rivers Capital LLC

- Coal syngas fired Allam cycle utilizing existing coal gasification technologies
- 294 MWe net, 43.3%–44.5% LHV net, low cost (\$33/MWh), and near-zero emissions power generation cycle
- Economic estimates include significant value for CO₂ tax credit/sales (\$41.5/MWh), Ar and N₂ sales (\$26.5/MWh)
- Requires 40% capacity to remain economic
- Captures over 97% of CO₂ at pipeline pressure without additional equipment or energy
- Allam Cycle demonstrated at 50MWth scale (NG, La Porte)
- Ramp rate is TBD through pilot testing (La Porte)
- Liquid oxygen / syngas can be stored for increased flexibility
- Capable of natural gas co-firing

Team Members: WSP UK Limited, Gas Technology Institute 89243319CFE000015, 8 Rivers Capital, LLC, Adam Goff, 919-667-1800, adam.goff@8Rivers.com

Allam cycle coal process integration

energy.gov/fe

sCO₂ Power Cycles Projects – Fossil Energy

Oxy Fuel Combustion that will help FE realize the potential for Direct Fired Cycles

Project Title	Performer	Scope	Project Start Date	DOE Funding (\$)
High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion	Southwest Research Institute	Oxy-Fuel Combustion	10/1/2014	4,579,719
Investigation of Autoignition and Combustion Stability of High Pressure Supercritical Carbon Dioxide Oxycombustion	Georgia Tech Research Corporation	Oxy-Fuel Combustion	10/1/2015	880,498
Chemical Kinetic Modeling Development and Validation Experiments for Direct Fired Supercritical Carbon Dioxide Combustor	University of Central Florida	Oxy-Fuel Combustion	10/1/2015	1,026,974
Development of Oxy-Fuel Combustion Turbines with CO ₂ Dilution for sCO ₂ -Based Power Cycles	Southwest Research Institute	Oxy-Fuel Combustion Turbine	7/9/2018	500,000
Combustion Modeling for Direct Fired Supercritical CO2 Power Cycles	Combustion Research and Flow Technology Inc.	Combustion modeling	2/21/2017	1,152,799
Highly Scalable Large-Eddy Simulations of Oxy- Fuel Combustors for Direct-Fired Supercritical CO2 Power	Cascade Technologies, Inc.	Combustion modeling	2/21/2017	1,154,173

sCO₂ Power Cycles Projects – Fossil Energy

Turbines

Project Title	Performer	Scope	Project Start Date	DOE Funding (\$)
Development of Low-Leakage Shaft End Seals for Utility-Scale Supercritical Carbon Dioxide (SCO2) Turbo Expanders		Turbomachinery	10/1/2014	6,824,098
Simulation Tool for Turbomachinery Operating with Trans-Critical Real Fluids	Combustion Research and Flow Technology Inc.	Modeling	6/13/2016	1,149,998

Modular Hybrid Heat Engines

Project Title	Performer	Scope	Project Start Date	DOE Funding (\$)
Integrated Optimization and Control of a Hybrid Gas Turbine/sCO ₂ Power System	Echogen Power Systems	Modular Hybrid Heat Engines	7/9/2018	500,000
Novel Modular Heat Engines with sCO ₂ Bottoming Cycle Utilizing Advanced Oil-Free Turbomachinery	General Electric	Modular Hybrid Heat Engines	7/9/2018	499,757
Advanced Gas Turbine and sCO ₂ Combined Power Cycle Power System	Southwest Research Institute	Modular Hybrid Heat Engines	7/9/2018	500,000

sCO₂ Power Cycles Projects – Fossil Energy

Pilot Plants and pre-FEED Studies

Project Title	Performer	Scope	Project Start Date	DOE Funding (\$)
Supercritical Carbon Dioxide Primary Power Large-Scale Pilot Plant	Echogen Power Systems	Large-scale coal-fired pilot	4/1/2018	3,239,879
Supercritical Carbon Dioxide Pilot Plant Test Facility	Gas Technology Institute	STEP 10 MWe Pilot Facility	10/1/2016	84,330,971
Coal-Based Power Plants of the Future	Echogen Power Systems	Pre-FEED study for indirect sCO2 coal-fueled air-fired power plant with energy storage and CO2 capture	4/15/2019	1,241,696
Coal-Based Power Plants of the Future	8 Rivers Capital	Pre-FEED study for direct sCO2 coal- fueled power plant	4/15/2019	1,143,086
Fort Custer sCO2 Power Plant Study	Team KeyLogic	Pre-FEED study for 5 MW combustion turbine and 2.5 MW sCO2 cycle power plant	4/26/2019	432,908

sCO₂ Power Cycles Projects – Fossil Energy

NATIONAL ENERGY TECHNOLOGY LABORATORY

Recuperators

Project Title	Performer	Scope	Project Start Date	DOE Funding (\$)
Technology Development of Modular, Low- Cost, High-Temperature Recuperators for SCO2 Power Cycles	Thar Energy	Recuperators	10/1/2015	9,344,826
Corrosion and Erosion Resistant Surface Features for High Pressure Supercritical Carbon Dioxide Heat Exchangers	Altex Technologies	Surface Features for Heat Exchangers	2/22/2016	1,148,125

Materials

Project Title	Performer	Scope	Project Start Date	DOE Funding (\$)
Properties of Advanced Ni-Based Alloys for A- USC Steam Turbines	ORNL	Materials	2/1/2016	150,000
Advanced Materials Issues in Supercritical Carbon Dioxide	Oak Ridge National Lab	Materials	10/1/2015	650,000

