

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

EMSA study "Fuel Cells in shipping" and TCO considerations

Lionel BOILLOT

San Francisco, 11th September 2019

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

EMSA Study – Tasks and Objectives

Review of Recent Projects Presentation of FC technologies Selection of the 3 best technologies Regulatory Gap Analysis Review of existing Standards Safety Assessment on the use of the 3 selected FCS (concept generic designs for RO-PAX and Cargo-Vessel) Total of 6 Safety FellowSHIP, FCShip, METAPHU, Nemo H2, High temperature PEMFC FELICITAS, SF-BREEZE, Pa-X-ell, US SSFC, Mosphoric acid fuel cell MC-WAP, ZemShips, SchiBZ and alkaline fuel cell (AFC), proton exchange membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell Study available at: http://emsa.europa.eu/main/air-pollution/alternative-fuels.html		Task 1 – PART A	Α	Task 2 – PART B	Task 3 – PART C
SF-BREEZE, direct methanol fuel cell Pa-X-ell, (DMFC), US SSFC, phosphoric acid fuel cell MC-WAP, (PAFC), ZemShips, molten carbonate fuel cell SchIBZ and (MCFC)	Review of Recent Projects FellowSHIP, FCShip, METAPHU, Nemo H2, FELICITAS.	Presentation of FC technologies alkaline fuel cell (AFC), proton exchange membrane fuel cell (PEMCF), high temperature PEMFC (HT-PEMFC).	Selection of the 3 best technologies based on individual merits	Regulatory Gap Analysis Review of existing Standards	Safety Assessment on the use of the 3 selected FCs (concept generic designs for RO-PAX and Cargo-Vessel) Total of 6 Safety Assessment Cases.
RiverCell solid oxide fuel cell (SOFC)	SF-BREEZE, Pa-X-ell, US SSFC, MC-WAP, ZemShips, SchIBZ and RiverCell	direct methanol fuel cell (DMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC) solid oxide fuel cell (SOFC)	Study av http://ems	ailable at: a.europa.eu/main/air-pollut	Account of the last of the las

DNV.GL

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

What is a Fuel Cell?

EMSA Study on the use of Fuel Cells in Shipping

Introduction **Technology and Projects Regulatory Gaps** Project Main partners Capacity Fuel Concept Year Fuel Cell US SSEC The program addresses U.S. Department 2000 -PEM 500 kW Diesel technology gaps to of Defens, Office 2011 MCFC (PEM) enable fuel cell power of Naval 625 kW systems that will meet Research (MCFC) the electrical power needs of naval platforms and systems FCSHIP Assess the potential for DNV, GL, LR, 2002-MCFC Various maritime use of FC and RINA, EU 2004 SOFC develops a Roadmap for GROWTH PEM future R&D on FC progam application on ships Class Hybrid propulsion using CMR Prototech. 2003 -PEM 306 kW. Hydrogen 212A/214 a fuel cell and a diesel ARENA-Project, present 30-50 kW Submarines enaine ThyssenKrupp per module Marine Systems. (212A) Siemens 120 kW per module (214)FellowSHIP 320kW MCFC system Eidesvik 2003-MCFC 320 kW LNG Viking Lady for auxiliary power of Offshore, 2011 Offshore Supply Vessel Wärtsilä, DNV MC-WAP MC-WAP is aiming at FINCATIERI, 2005-MCFC Concept Diesel the application of the Cetana, OWI. 2010 design of molten carbonate fuel TÜBITAK, RINA, 500 kW, cell technology onboard NTUA, Techip final large vessels, such as KTI, etc design of 150 kW RoPax, RoRo and cruise ships for auxiliary power generation purposes

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

	Project	Concept	Main partners	Year	Fuel Cell	Capacity	Fuel
	FELICITAS – subproject 1	Application requirements and system design for FC in heavy duty transport systems	Lürssen, FhG IVI, AVL, HAW, Rolls- Royce, INRETS, VUZ	2005-2008	-	-	-
	FELICITAS – subproject 2	Mobile hybrid marine version of the Rolls-Royce Fuel Cell SOFC system	Rolls-Royce, Uni Genoa, Lürssen, HAW, Uni Eindhoven	2005-2008	SOFC	250 kW (60 kW sub system)	LNG, other fuel also evaluated
							Hydrocarb
						FELICITA	S and drogen
1			1				-
							drogen
			~			Charter	

Stationary Power 1MW hybrid SOFC system and 250kW Generator module of Rolls-Royce Fuel Cell Systems

Introduction

EMSA Study on the use of Fuel Cells in Shipping

Technology	and Projects	Reį	gulatory	v Gaps		Safety and Risk analysis
Concept	Main partners	Year	Fuel	Capacity	Fuel	

Project	Concept	Main partners	Year	Fuel Cell	Capacity	Fuel
METHAPU Undine	20 kW SOFC tested for the evaluation of 250 kW SOFC solution for marine APU.	Wallenius Maritime, Wärtsilä, DNV	2006- 2010	SOFC	20 kW	Methanol
ZemShip - Alsterwasser	100 kW PEMFC system developed and tested onboard of a small passenger ship in the area of Alster in Hamburg, Germany	Proton Motors, GL, Alster Touristik GmbH, Linde Group etc.	2006- 2013	PEM	96 kW	Hydrogen

EMSA Study on the use of Fuel Cells in Shipping

Introduction	Techno	ology and Projects	Regula	atory Gaps	5		Safety
	Project	Concept	Main partners	Year	Fuel Cell	Capacity	Fuel
	E4Ships – Pa-X-ell MS MARIELLA	60 kW modularized HT- PEM fuel cell system developed and tested for the decentralized auxiliary power supply onboard passenger vessel MS MARIELLA.	Meyer Werft, DNVGL, Lürssen Werft, etc	Phase 1: 2009-2017 Phase 2: 2017-2022	HTPEM	60 kW (each stack is 30 kW)	Methanol
	E4Ships - SchIBZ MS Forester	100 kW containerized SOFC system developed and tested for the auxiliary power supply of commercial ships. Scalable up to 500 kW units.	ThyssenKrupp Marine Systems, DNVGL, Leibniz University Hannover, OWI, Reederei Rörd Braren, Sunfire	Phase 1: 2009-2017 Phase 2: 2017-2022	SOFC	100 kW	Diesel

SCHIBZ

7

is

EMSA Study on the use of Fuel Cells in Shipping

Safety and Risk analysis Introduction **Technology and Projects Regulatory Gaps** Fuel Project Concept Main partners Capacity Fuel Year Cell MF Vågen Small passenger ship in Hydrogen CMR Prototech, 2010 HTPEM 12 kW the harbour of Bergen **ARENA-Project** Hornblower Hybrid ferry with diesel Hornblower 2012-PEM 32 kW Hydrogen Hybrid generator, batteries, PV, wind and fuel cell Nemo H2 Small passenger ship in Rederij Lovers the canals of etc Amsterdam Hydrogenesis Small passenger ship Bristol Boat which operates in of the last of the pay and pay Trips etc. LUVERS SF-BREEZE Nemo 2 11111 onar 2015 PEM 1201 nd present per modul Tota powe 2.5M

EMSA Study on the use of Fuel Cells in Shipping

Introduction Technology and Proje		ology and Projects	Regulato	ory Gaps			Safety and I	Risk analysis
	Project	Concept	Main partners	Year	Fuel Cell	Capacity	Fuel	
	RiverCell	250 kW modularized HT- PEM fuel cell system developed and to be tested as a part of a hybrid power supply for river cruise vessels	Meyer Werft, DNVGL, Neptun Werft, Viking Cruises	Phase 1: 2015-2017 Phase 2: 2017-2022	HTPEM	250 kW	Methanol	
	RiverCell – Elektra	Feasibility study for a fuel cell as part of a hybrid power supply for a towboat	TU Berlin, BEHALA, DNVGL, etc	2015-2016	HTPEM	-	Hydrogen	

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

7 fuel cell types were shortlisted and evaluated deeper 3 types were selected based on scores in predefined parameters

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Technology selected: (a) PEM and (b) high-temperature PEM (HT-PEM)

PEM Technology Mature Technology Compact and lightweight Relatively low cost Tolerance for cyclic operation Require very pure H2 Complex water mgmt system

HT-PEM Technology

Draws on the benefits of PEM, but address some of the cons:

- Fuel flexible
- Avoid complex water mgmt system
- Waste heat for heating purposes

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Technology selected: (c) Solid Oxide Fuel Cell (SOFC)

SOFC Technology					
Technology starting to become mature					
SOFC is highly efficient (up to 60%)	Opportunity for waste heat recovery				
Moderately sized	Less flexible towards cyclic operation				
Very fuel flexible	Good for battery hybrid solutions				

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Short summary of regulative status

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Key Regulatory Challenge

- For a zero pollutant emission Fuel Cell installation
- For the use of Hydrogen as Energy Carrier

EMSA Study on the use of Fuel Cells in Shipping

Introduction	Technology and Projects	Regulatory Gaps	Safety and Risk analysis
	IGF Code:		
	 use of fuel cells use of other low flashpoint fuels than LNG/CNG bunkering of gaseous H₂, other low flashpoint fuels and LH₂ 	Further development of IGF code needed. Detailed safety studies. Use existing standards for non-maritime applications as input.	
	Bunkering:		
	Rules for bunkering of liquid hydrogen	Review of applicable land based standards. Risk studies and a qualification process to develop rules and bunkerir procedures.	ng
	Gaseous hydrogen	Review of applicable land based standards. Risk studies a qualification process to develop bunkering procedures.	ind
	Low Flashpoint Liquids	Bunkering procedures for LFL's Safety zones for gas vapour from tanks	
	On-board storage:		
	Storage of compressed hydrogen	Qualification of pressure tanks for maritime use with com pressed hydrogen gas. Safety studies considering hydrog pressure tanks and requirements for safe solutions. Devel opment of provisions for possible high pressure storage technologies in enclosed areas.	- gen -
	Storage of liquid hydrogen	Possible storage related failure modes need to be under- stood, and land based solutions adjusted if necessary for safe application.	
/ EMSA		V·GL	15

EMSA Study on the use of Fuel Cells in Shipping

Introduction T	echnology and Projects	Regulatory Gaps	Safety and Risk analysis
	Fuel cell System:		
	Safe handling of hydrogen releases	Review of and update of fuel cell rules and regulation studies to improve understanding of possible safety scenarios including fire and explosion to recomment controlling measures.	ons. Risk / critical id risk
	Ventilation requirements	The fuel specific properties must be considered. Re and realistic hydrogen dispersion simulations neede evaluate and/or update ventilation requirements.	levant ed to
	New arrangement designs	Need for improved understanding of system desigr new technology challenge existing regulations	issues,
	Piping to fuel cell system	Knowledge and safety assessments needed to iden to adjust LNG requirements for the use of LH.	tify needs
	Reforming of primary fuel	Reformer safety issues should be explored and doc	umented
	Ship life phases:		
	Best practices/Codes for hydrogen, LFL fuels and fuel cell installations	Procedures should be developed for commissioning ing, maintenance to reflect the properties of hydrog other LFL fuels.	g, dock- jen and
	Fuel specific:		
	Hydrogen	Comprehensive safety studies considering hydroge properties, behaviour and conditions needed for th hydrogen in shipping applications	n specific e use of
ZEMSA		·GL	16

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Scenario	Ship type	Fuel Cell type
1		SOFC with reformer and WHR LNG as primary fuel
2	Ro-Pax ferry	HT PEM FC with reformer Methanol as primary fuel
3		PEM FC fueled with hydrogen
4		SOFC with reformer and WHR LNG as primary fuel
5	Gas Carrier	HT PEM FC with reformer Methanol as primary fuel
6		PEM FC fueled with hydrogen

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

HAZID Team

Company	Expertise / Function
EMSA	Observer
TKMS	FC Design and arrangement
Meyer Werft	FC Design and arrangement
Meyer Werft	Methanol Fuel System design
Meyer Werft	Electrical Integration
Serenergy	FC Manufacturer
sunfire	FC Manufacturer
TUB	FC Design and arrangement
TKMS	Electrical Integration
ATG	FC boat operator
DNV GL	Project manager
DNV GL	Facilitator
DNV GL	IMO Rules, Fuels and Fuel Cells
DNV GL	Hydrogen Risk Assessment
DNV GL	Fuels and Fuel Cells
DNV GL	Risk Assessment

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

First things first! – Need to define adequately the Boundaries of different elements

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

5

6

Results

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Results – most critical findings

Strong Exothermic reaction of reformer material

High energy collision penetrating LH2 tank

Internal leakage in FC Module

Picture courtesy of Ecole Polytechnique Fédérale de Lausanne

Rupture of tank with compressed H2

Picture courtesy of ASME

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Results – most critical findings

Leakage of hydrogen rich gases

Failure of pressure reduction

Picture Courtesy of Long Tsuen Industria

Failure of electrical power conditioning system

Thermal runaway of energy buffer (Battery)

EMSA Study on the use of Fuel Cells in Shipping

Introduction

Technology and Projects

Regulatory Gaps

Safety and Risk analysis

Results – most critical findings

Loss of inert gas system

Leakage during bunkering of hydrogen

Picture Courtesy of Seatrade Maritime News

Vehicle crash penetrating Fuel Cell System

Picture courtesy of Peter MacDiarmid/Getty Images

Preliminary business case – FC Ferry use in Europe

Assumptions and key parameters

Applications and technologies

initial deployment	FCH Ferry	Diesel Ferry
Technical data Ferry length Passengers Powertrain	30 m 100 2 x 800 KW PEM FC	30 m 100 2 x 800 KW Diesel Eng.
Lifetime	25 years	25 years
CAPEX ¹	~ EUR 11-15 m	~ EUR 3-3.5 m
Fuel	Hydrogen (250 bar²)	Diesel
Fuel consumption	3.4 kg/nm	14 l/nm
Maintenance	2.76 EUR/nm	2.53 EUR/nm
Infrastructure CAPEX OPEX	HRS 3,000,000 EUR 100,000 EUR/y	RS 345,000 EUR 100,000 EUR/y

 Incl. cost of initial development, testing, permitting/licensing/approvals (excl. possibly necessary fuel cell stack replacements)
 Alternative tanks pressure between 200-700 bar

Use case

- Starting in 2021, a fuel cell powered passenger ferry will offer daily public transportation between to cities along the costal line of a European province with ~100,000 inhabitants
- With a top speed of ~28 kn and average speed of ~22 kn, the ferry will offer 360 round trips à 115 nm per year, requiring one (overnight) refuelling at the home port
- Resulting annual operations in this use case:
 - Total annual distance travelled: ~ 33,800 nm
 - Annual energy requirements: ~1,870,000 kWh (~6,300 kWh/d)
 - Annual hydrogen consumption: ~122,500 kg (~390 kg/d)

Exogenous factors

- Source of hydrogen: electrolysis from (low-cost) hydropower
- Cost of hydrogen: 3.5 EUR/kg
- H2 refuelling infrastructure: one refuelling station at the home port, synergies with other port-related FCH applications (e.g. forklift trucks)
- Cost of Diesel: 1.01 EUR/I
- CO2 footprints of green / grey hydrogen : 0 / 9 kg CO2/kg
- CO2 footprints of diesel : 2.64 kg CO2/l
- NOX footprints of diesel: 0.004 g/l

Source: Roland Berger

Business case and performance overview

FCH ferry would likely yield a significant cost premium over a diesel ferry – significant CO2 savings expected, esp. with green H2

Economic

Estimated annualised Total Cost of Ownership [EUR/nm]

Environmental

- Zero local emissions of CO2, pollutants such as NOx, fine dust particles when using green hydrogen
- CO2 emissions well to wheel dep. on fuel source and fuel efficiency; in this example, a green hydrogen fuel cell ferry saves nearly 1,250 t CO2 p.a.
- Comparison of CO2 emissions [kg CO₂/nm]

Technical/Operational

- Pure FCH electric ferries are currently in a development phase, first pilot demonstration projects with prototypes will be starting within the next 5 years
- Medium-term commercialisation unlikely, initial priorities are successful demonstration projects in areas with high need for decarbonisation of maritime public transport, e.g. Scandinavia, Mediterranean
- Challenges: initial regulatory framework and permitting (e.g. refuelling protocols, FCH powertrain for maritime appl.), hydrogen supply (quantities, cost efficiency)
- Potential to meet same operational requirements (range, refuelling time) – like diesel/MGO ferries

CAPEX of ferry and infrastructure as well as cost of hydrogen are key determinants for the business case at hand

Capital cost of FCH ferry and hydrogen infrastructure

 Highly dependent on the technical specifications which in turn derive from the deployment use. Strong regional differences; initial costs for development, testing and permitting/certification as well as cost of refuelling infrastructure are decisive factors

If capital cost of ferry and refuelling infrastructure were reduced to diesel levels, TCO would fall below diesel levels

Hydrogen supply and cost of hydrogen

 Relatively high volumes of hydrogen consumption (e.g. here nearly 400 kg per day and vessel) require large supplies, storage and refuelling capacities – supplying green hydrogen from large-scale electrolysis with cheap renewable electricity might be the ideal long-term solution

Reducing the price of hydrogen to 2.50 EUR/kg leads to a reduction in TCO of 2-5 EUR/nm (or -5-10%) - strong regional differences

uel costs

Labour costs Depreciation (ferry & infra.) Financing costs