

Hydrogen Fuel Cell Applications in Ports:

Feasibility Study at Multiple U.S. Ports

Lindsay M. Steele

Charlie Myers

ORNL

H2@Ports International Workshop San Francisco, September 2019

PNNL-SA-147032

PNNL is operated by Battelle for the U.S. Department of Energy

Why Ports?

- Energy consumption 28% commercial transportation, 4% U.S. ports^(a)
- Pollution 29% U.S. CO₂ emissions from transportation^(b)

Initiatives to decarbonize transportation of freight (global)

Need to consider new technologies and alternative fuels to achieve emission reduction targets

Ports are an ideal location for hydrogen-powered transport

- Many uses of transport-related equipment in a localized/central space "cluster"
- Explores the potential for wide-scale hydrogen production and adoption in diverse industries
- Works to identify market opportunities, partnerships, and project funding

Feasibility study of fuel cell applications at multiple ports nationwide (diesel ⇒ hydrogen)

- Collect information on inventory of equipment used by port and terminal tenants
- Associated annual/daily usage, power, and fuel consumption
- Information collected from port administrators and port tenants (reports and/or specific data)
- Analysis of satellite imagery to verify/confirm port equipment profiles
- https://www.eia.gov/energyexplained/use-of-energy/transportation-in-depth.php
- https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (b)

Methodology/Port Operations

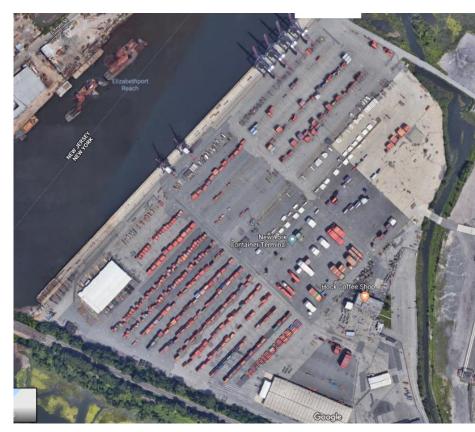
Port Side	Ship Side
Cranes	Ocean Goi
Rubber Tire Gantry Crane (RTG)	
Straddle Carrier	
Container Handlers	Vessel Shi
Container Reach Stackers	(hotel, reefers)
Yard Tractors	
Drayage Trucks	

bing Vessels (OGV) Harbor Craft Ferries ip-to-Shore Power s, pumps, lighting)

Equipment Fuel Use Information Sources

Port Emissions Inventory Reports

• Puget Sound (SEATAC), New York/New Jersey, Oakland, Long Beach, Los Angeles, Houston


Port Authorities and Terminal Operators

• Visit ports to obtain specific details on terminal equipment and port terminal operations

Satellite/Aerial Imagery Analysis

Verify or check equipment inventories or unpublished port equipment inventories

Estimate Port Inventory Fuel Use from Emissions

Determine fuel use for each equipment type – diesel

- Estimate from emissions data or known fuel consumption rates
- Convert CO₂ emissions to diesel using U.S. EIA emissions coefficients^(a)
 - 22.4 lb CO₂ released per gallon of diesel

Diesel fuel conversion to hydrogen fuel equivalent

- 1 gallon low sulfur diesel = 1.125 kg $H_2^{(b)}$
- 1 ton = 2,000 lb = 907.185 kg
- 1 tonne = 2205 lb = 1.1023 ton

(a) https://www.eia.gov/environment/emissions/co2_vol_mass.php (b) https://h2tools.org/hyarc/hydrogen-data/energy-equivalency-fuels-lhv

Port Terminal Equipment kg/day H₂

RTG Crane 45 kg/day

Container Handler 56[L] 25[E] kg/day

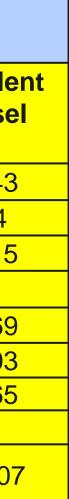
Forklift 5 kg/day

Reach Stacker 33 kg/day

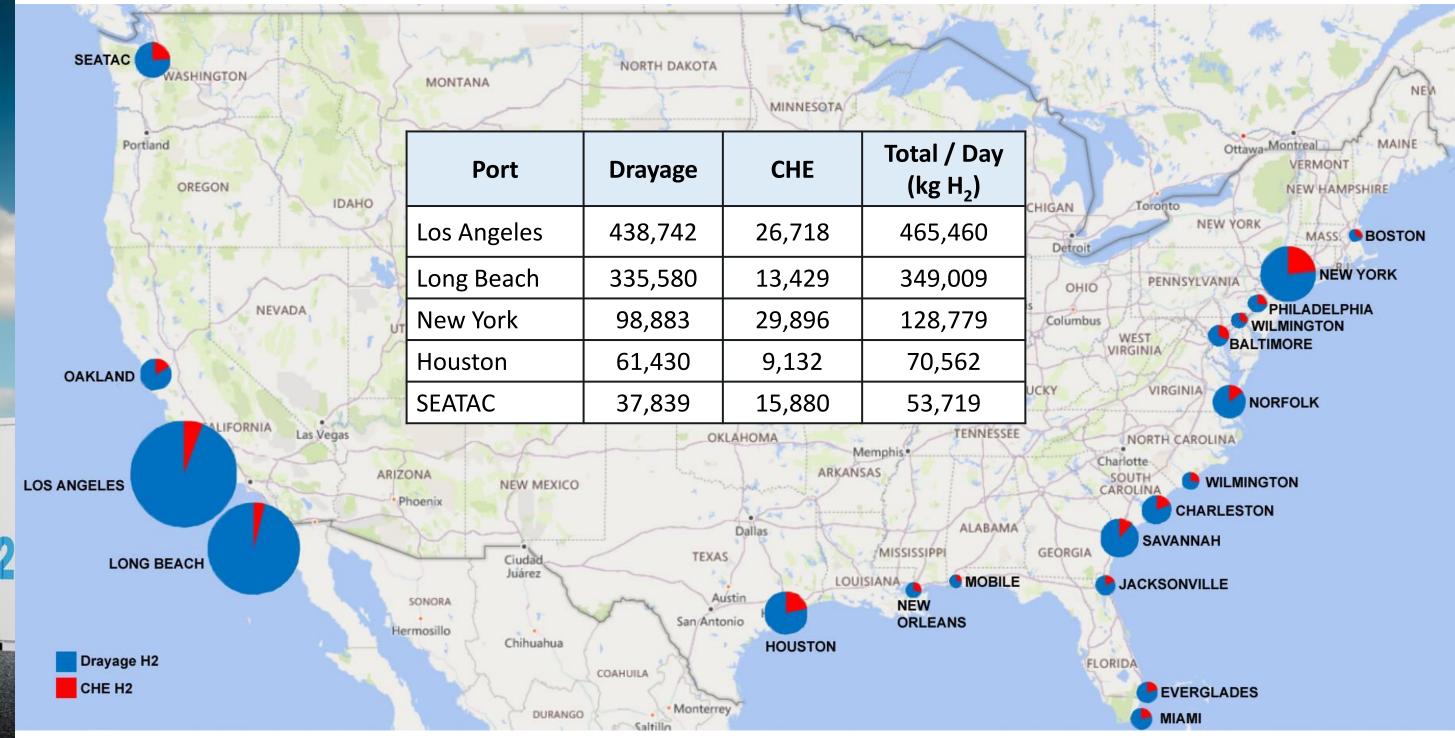
Straddle Carrier 46 kg/day

Yard Tractor 21 kg/day

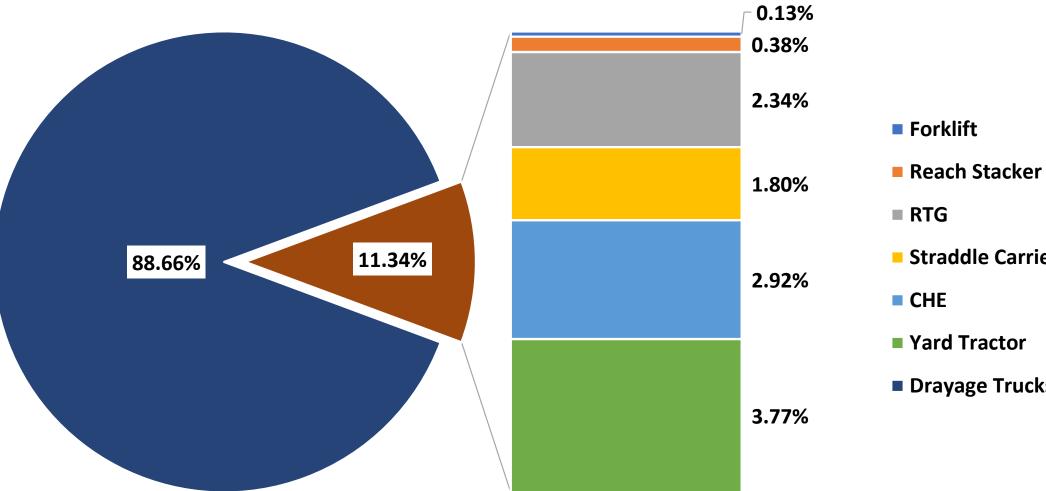
SEATAC Emissions Inventory to Fuel Conversion


- Estimate Hydrogen Use in Port of Seattle/Tacoma/NWSPA
- 22 million kg H_2 per year = 22,000 tonnes

TOTAL SEATAC (Annual)						
Source Category	CO ₂ (tonnes)	Diesel (gals)	H ₂ Equivale ULS diese (kg)			
OGV, hoteling	82,721	7,385,804	8,306,343			
OGV, maneuvering	7,957	710,446	798,994			
Harbor vessels	24,194	2,160,179	2,429,415			
Recreational vessels	739	65,982	74,206			
Locomotives	41,957	3,746,161	4,213,069			
Cargo-handling equipment	44,215	3,947,768	4,439,803			
Heavy-duty vehicles	16,824	1,502,143	1,689,365			
Fleet vehicles	995	88,839	99,912			
Total	219,602	19,607,321	22,051,10			


Note: Approximately 900 Tonnes H₂ Fuel Dispensed in U.S. 2018^(a)

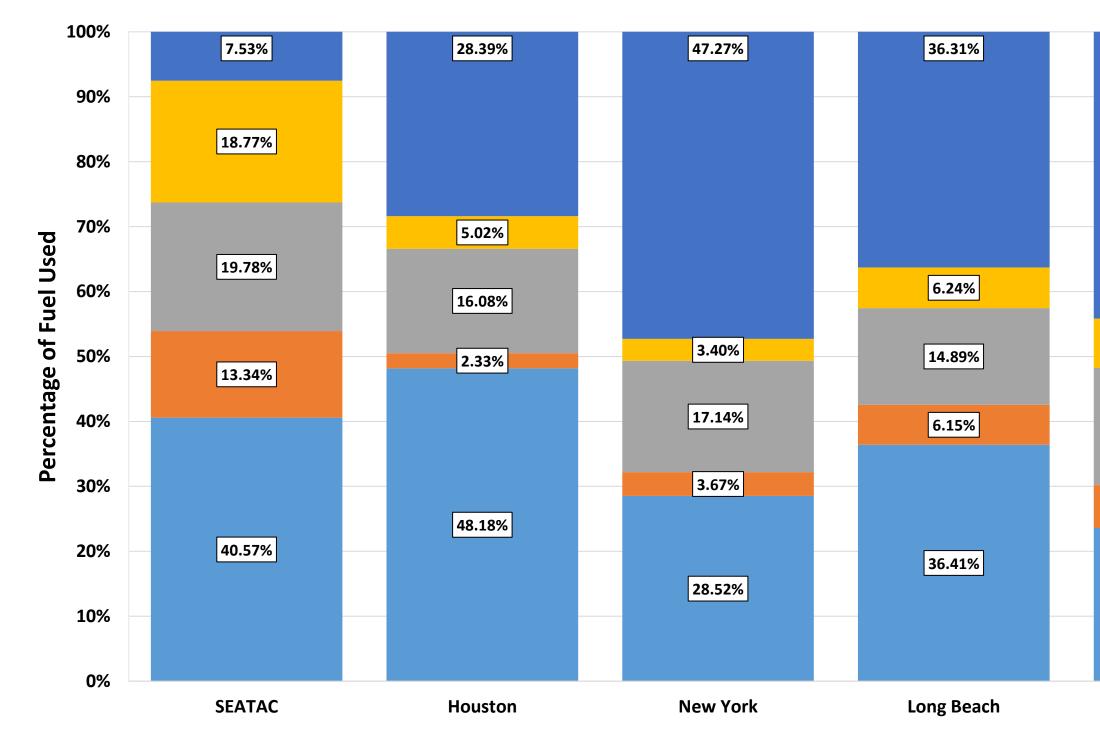
(a) https://www.nrel.gov/hydrogen/infrastructure-cdps-retail.html



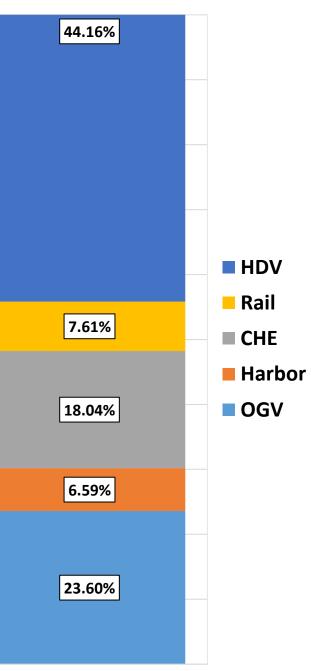
Potential Hydrogen Demand at U.S. Ports

Potential Daily H₂ Demand Percentage by Equipment Type for U.S. Ports

Total Potential H₂ Demand = 1,385 tonnes per day (19 U.S. Ports)

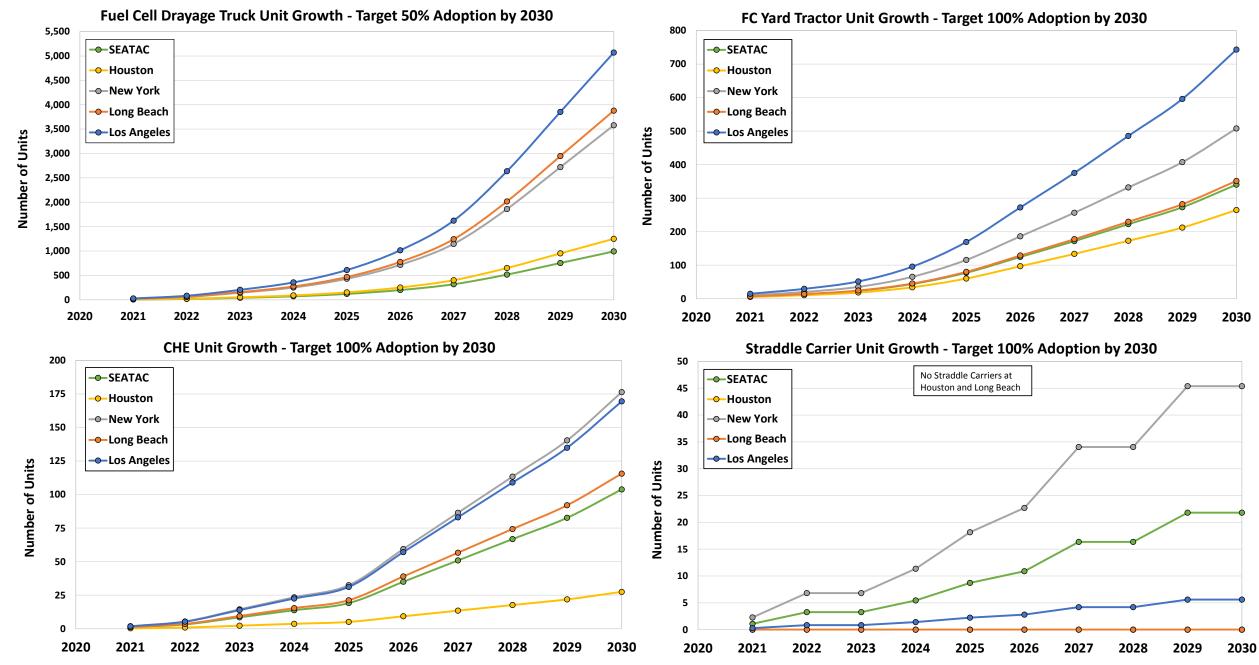


Straddle Carrier


Yard Tractor

Drayage Trucks

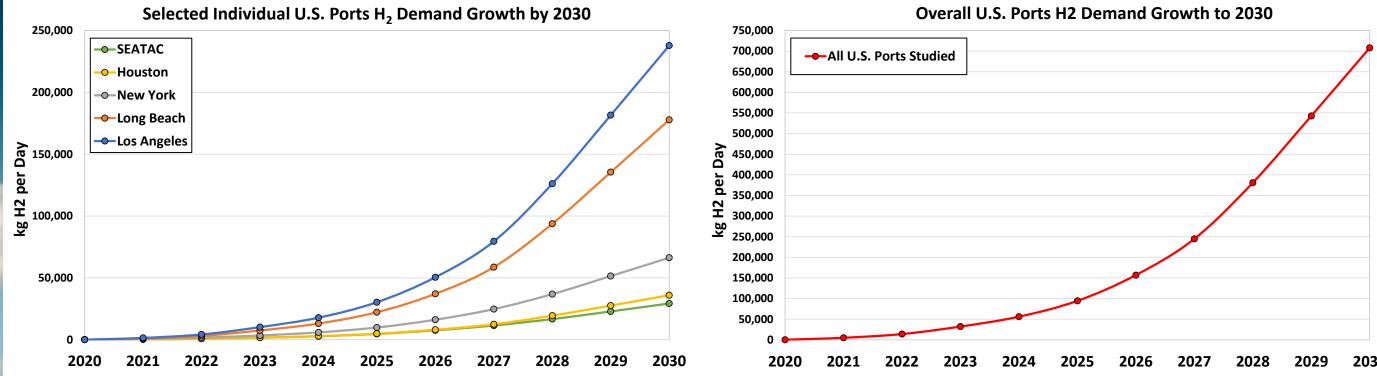
Equipment Type Fuel Use by Port



H

Los Angeles

Port Side Related Equipment Fuel Cell Adoption Rates

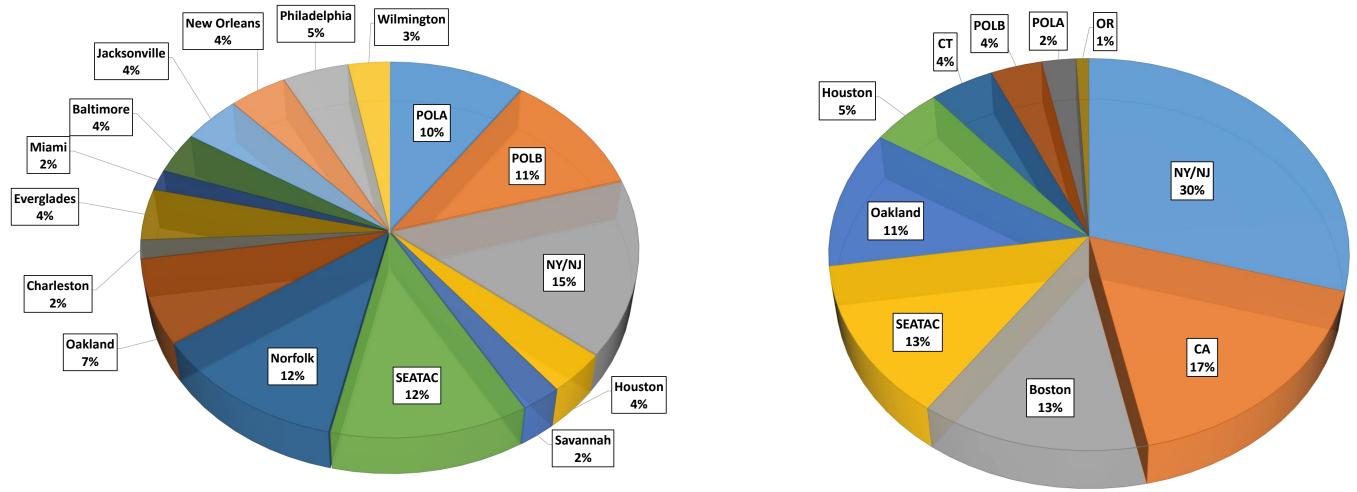


- 50% adoption of existing fleet by 2030, all new drayage trucks are ZEV starting 2022
- Yard tractor, CHE, and straddle carrier growth based on port and terminal operator fleet purchase dynamics

H₂ Demand in U.S. Ports - Summary

- Individual port H₂ demand at lowest adoption rates justifies pipeline over truck delivery
- Drayage trucks represent the largest H₂ use associated with port container operations
- \triangleright 2nd highest H₂ demand is yard tractors and container handling equipment
- Adoption rates can be matched to H₂ generation capacity growth for optimal utilization and lower H₂ fuel cost

H₂ Demand in U.S. Ports



Individual port H₂ demand range 25,000–250,000 kg per day

Overall port H₂ demand for U.S. ports studied is over 700,000 kg per day

2030

Tugboat Daily H₂ Demand U.S. Ports Ferry Daily H₂ Demand U.S. Ports and State Data

Total kg H₂ = 52,527

Port	Tug (Units)	H2/Tug/Day (kg)	Total Tug H₂/Day (kg)	Annual H₂ (kg)
NY/NJ	31	258	8,010	2,923,535
Norfolk	20	311	6,220	2,270,300
SEATAC	20	311	6,220	2,270,300
POLB	14	406	5,678	2,072,365
POLA	14	364	5,098	1,860,890
Oakland	21	183	3,838	1,400,719

Total Daily kg H₂ = 530,278

Containership Hoteling "At Berth" Hydrogen Demand

	Los Ar	os Angeles Long Beach		PUGET		
OGV TEU Class	Per Hotel Use H2 (kg)	Annual Hoteling H2 (kg)	Per Hotel Use H2 (kg)	Annual Hoteling H2 (kg)	Per Hotel Use H2 (kg)	Annual Hoteling H2 (kg)
1000	No Data		2,083	237,451	2,509	288,491
2000	1,704	313,621	5,157	417,745	2,167	195,039
3000	1,313	6,563	2,368	139,711	2,555	112,409
4000	2,223	484,505	4,610	590,126	3,437	470,860
5000	2,627	231,157	7,937	198,426	4,368	663,980
6000	3,245	808,037	6,069	424,846	4,495	476,520
7000	8,823	538,227	10,174	20,348	4,969	258,407
8000	3,652	544,160	6,892	1,647,084	5,461	901,134
9000	3,791	178,167	3,154	195,537	4,420	123,758
10000	7,171	337,050	7,503	525,226	5,401	437,493
11000	6,451	238,684	15,360	691,179	5,285	10,570
12000	6,974	27,894	19,042	76,167		
13000	6,041	277,905	13,732	810,210		
14000	6,091	115,720	37,056	37,056		
Total		4,101,689		6,011,112		3,938,662

H₂ demand varies by TEU class and the number of reefers onboard Modular fuel cell APU advantages – berthing flexibility, amount of power required

Overall Port Side and Ship Side H₂ Demand

- Individual port side H₂ demand potential range 10,000–100,000 tonnes per year
- Total potential port side H₂ demand for U.S. ports studied > 250,000 tonnes per year
- Tugboat potential H₂ demand for U.S. ports studied > 15,000 tonnes per year
- Ferry potential H₂ demand from port and U.S. DOT data > 190,000 tonnes per year
- Containership hoteling potential H₂ demand > 15,000 tonnes per year (based on 3 ports)

U.S. maritime H₂ demand could exceed $\frac{1}{2}$ million tonnes per year

Potential Future Activities

<u>Container Terminals</u> (Operators, Ports, Drayage)

- Engage with port operators, authorities, drayage operators, container handling equipment manufacturers, and fuel cell equipment stakeholders to expand data set, discuss challenges, and identify first actions
- Engage with hydrogen fuel cell and hydrogen infrastructure industry stakeholders to develop terminal equipment and drayage truck refueling solutions
 - On-terminal mobile hydrogen equipment refueling solution
 - High volume throughput drayage truck hydrogen fueling station

Containership (<4000 TEU), Tugs & Ferry Operators

- Engage with operators to confirm which systems are best for fuel cell technology phase in and determine the current operating cost and performance metrics
 - What role can converting auxiliary power systems play in the adoption of fuel cell/hydrogen technology on containerships?
- Develop fuel cell use profile for auxiliary power systems that includes all forms of hoteling load
- Identify associated ship design standards for onboard fuel cell systems, hydrogen storage, and hydrogen bunkering

Hydrogen Infrastructure (Industrial Gas Companies)

- Determine the optimal size of a hydrogen generation plant or plants to support a port hydrogen cluster
 - Explore the maintenance cycle typical of these plants so that supply is uninterrupted
- Determine what hydrogen bunkering options and challenges exist to support containerships, tugs, and ferries
- Develop a roadmap for hydrogen generation and distribution to the various component locations of a port cluster and identify the technology development needs

Urban Hydrogen Cluster

- Hydrogen Port Clusters (H₂PC) will typically be part of a broader urban environment. Include stakeholders from the urban cluster to broaden hydrogen demand roadmap
- Stakeholders could include nearby airport(s) authorities, commuter rail supporting the urban environment, mass transit bus authorities, and advanced mobility vehicle (AMV) developers

Thank you

Lindsay M. Steele Sr. Research Scientist Energy Policy and Economics Group (509) 371-7268 Indsay.steele@pnnl.gov

PNNL-SA-147032

