

## Liquefied Hydrogen Carrier Pilot Project in Japan



#### H2@Port Wednesday, September 11, 2019 ClassNK

#### Introduction

### **NIPPON KAIJI KYOKAI (ClassNK or NK)**

- International classification society in Japan established in 1899
- Abt. 20% share of classification of world cargo vessels in Gross Tonnage
- Head Office : Tokyo, Japan
- Abt.130 sites in the world for ship survey
- Offices in U.S. : New York, Charleston, Houston, Los Angeles, Miami, New Orleans, Norfolk, Seattle

#### **ClassNK activities relating to hydrogen / fuel cell**

- Guidelines providing additional safety requirements for design and construction of the vessels have been issued based on the results of R&D and IMO discussions.
  - ① Guidelines for Liquefied Hydrogen Carriers (March 2017)
  - ② Guidelines for Fuel Cell Systems On Board Ships (First Edition) (June 2019)
- Design approval and surveys for construction of LH2C for the pilot project in Japan applying the above Guidelines ①.









#### **Hydrogen Energy – Demand Growth**



KHI "Introduction to a Liquefied Hydrogen Carrier for a Pilot Hydrogen Energy Supply Chain (HESC) project in Japan", Gastech 2017

**ClassNK** 

#### Pilot Hydrogen Energy Supply Chain project run by HySTRA\*

\*) HySTRA: CO2-free Hydrogen energy Supply-chain Technology Research Association composed of Kawasaki Heavy Industries, Shell, Iwatani Corporation, J-Power





#### **1250m3 Liquefied Hydrogen Carrier**



| Liquefied Hydrogen Carrier           |                            | LH2 Cargo Containment System |                                                                 |
|--------------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------|
| Shinyard                             | Kawasaki Heavy Industries  | Manufacturer                 | Kawasaki Heavy Industries                                       |
| Shipyaru                             | Rawasaki neavy industries  | Total Capacity               | Ab. 1,250 m3 x 1 tank                                           |
| Dimensions (L <sub>PP</sub> x B x D) | ab.110m x ab.20 m x ab.11m | Tank Type                    | IMO Independent tank type C                                     |
| Gross tonnage                        | ab. 8,000 tons             | Design Press. x Temp.        | 0.4 MPaG x -253 degC (20K)                                      |
| Propulsion System                    | Diesel Electric            | Insulation System            | Vacuum Multi-layer Insulation<br>+ Supplementary Kawasaki Panel |
| Speed                                | ab. 13.0 knots             |                              | Insulation System                                               |
| Flag State/Class                     | Japan / ClassNK            | BOG Management               | Pressure Accumulation                                           |

#### **Rule requirements for LH2 carrier**

# **ClassNK**









Table 1: Interim Recommendations for carriage of liquefied hydrogen in bulk

| Product name | Ship type | Independent<br>tank type C<br>required | Control of<br>vapour space<br>within cargo<br>tanks | Vapour<br>detection | Gauging | Special<br>requirements |
|--------------|-----------|----------------------------------------|-----------------------------------------------------|---------------------|---------|-------------------------|
| Hydrogen     | 2G        | -                                      | -                                                   | Flammable           | Closed  | See Table 2             |

Table 2: Special Requirements carriage of liquefied hydrogen in bulk(Total 29 Special Requirements)

| No. | Special Requirement                                                                                                                                                 | Related hazard                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 6   | At places where contact with hydrogen is anticipated, suitable materials should be used to prevent any deterioration owing to hydrogen embrittlement, as necessary. | Hydrogen<br>embrittlement<br>(see 4.3) |



#### **Design Basis for Pilot LH2C**

- IGC Code + Interim Recommendations(IMO Res. MSC.420(97))
  - Hydrogen specific standards / guidelines:
  - ✓ ISO/TR 15916 : Basic Considerations for the Safety of Hydrogen Systems
  - ✓ AIAA G-095-2004 : Guide to Safety of Hydrogen and Hydrogen Systems
  - ✓ NFPA 2 : Hydrogen Technologies Code
  - ✓ NFPA 55 : Compressed Gases and Cryogenic Fluids Code
  - ✓ CGA G 5.4 : Standard for Hydrogen Piping Systems At User Locations
  - ✓ CGA G 5.5 : Hydrogen Vent Systems
  - ✓ ASME B31.12-2011 : *Hydrogen Piping and Pipelines*
  - ✓ IEC 60078-10-1 : Explosive atmospheres Part 10.1 Classification of areas -Explosive gas atmospheres
  - ✓ IEC 60079-29-2 : Explosive atmospheres Part 29.2 Gas detectors Selection, installation, use and maintenance of detectors for flammable gases and oxygen
  - Safety Risk Assessment (HAZID, HAZOP, FMEA, QRA, etc.)



#### **Hazards related to Hydrogen**

- Low temperature hazard
- Hydrogen embrittlementPermeability
- Low density & High diffusivityIgnitability
- High pressure hazard
- Health hazard
  - Wide range of
    - flammable limits

| Hydrogen flame | Propane flame  |
|----------------|----------------|
|                |                |
| - Appi         |                |
|                | Y              |
| 1 5 5          |                |
|                |                |
| Source: Hydr   | ogen Tools web |



|                                                      | Hydrogen  | Methane    |
|------------------------------------------------------|-----------|------------|
| Boiling temp (K)                                     | 20.3      | 111.7      |
|                                                      | (-253 °C) | (-161.5°C) |
| Gas density at standard cod.<br>(273K & 1atm (kg/m³) | 0.09      | 0.72       |
| Gas density at boiling point<br>(kg/m³)              | 1.34      | 1.82       |
| Liquid density (kg/m³)                               | 70.8      | 422.5      |
| Evaporation Latent heat (kJ/L)                       | 31.6      | 215.8      |
| Flammability range (% vol)                           | 4 - 75    | 5 - 17     |
| Min. Ignition Energy (mJ)                            | 0.017     | 0.274      |
| Diffusion Coefficient in air<br>(cm²/s)              | 0.61      | 0.16       |

#### **Safety Considerations**



#### HAZID study / Accidental Scenario on Hydrogen Leakage







#### **Novel Technologies Qualification**

| Application (Salety Childal System & Equipment)                     |                                          |  |
|---------------------------------------------------------------------|------------------------------------------|--|
| Cargo containment system                                            | Hazardous area classification            |  |
| Vacuum insulated piping                                             | Ship / shore bonding philosophy          |  |
| Cargo compressor                                                    | Flange management philosophy             |  |
| Cargo pumps                                                         | Cargo venting philosophy                 |  |
| Cargo vaporizer / heater                                            | Cargo jettisoning                        |  |
| Gas Combustion Unit                                                 | Cargo hold LIN/LOX protection philosophy |  |
| Level measurement/TPS                                               | Ventilation System                       |  |
| Relief valves, bellows, gaskets etc.                                | Gas detection                            |  |
| Instrumentation (Pressure, Temp.,<br>Vacuume press., plugs, sensor) | Fire detection                           |  |
| Cargo vent mast                                                     | Firefighting philosophy                  |  |
| Cargo manifold                                                      | Purging and sampling philosophy          |  |
| Marine loading arm & connection piece                               |                                          |  |
|                                                                     |                                          |  |

Application (Safety Critical System & Equipment)



#### **Verification Experiment**

 Verification and validation of physical effects modelling software for liquefied hydrogen



Co-developed with KHI, Iwatani Corporation, K-Line, ClassNK

Source: KHI Presentation in SIGTTO Japan Regional Forum 2016



#### **Dispersion Analysis Study**

✓ Extended hazardous area in accordance with IEC 60079-10-1



#### Hazardous area classification

Source: KHI Presentation in SIGTTO Japan Regional Forum 2016



#### **Airflow Analysis Study**

- ✓ Improve the airflow within cargo compressor room by optimizing ventilation change rate, inlet/outlet location
- ✓ Effective gas detector location



Source: KHI Presentation in SIGTTO Japan Regional Forum 2016

## **Safety Considerations**

**ClassNK** 

### **ClassNK "Guidelines for Liquefied Hydrogen Carriers"**

- ✓ Guidelines for the design and construction of LH2C
- Re-structuring and partly supplementing the interim guidelines with additional requirements

e.g. Special Requirements in Interim Recommendations: No. 25 "Risk Assessment"



free download fm www.classnk.or.jp

#### **ClassNK Guidelines "Items to be considered in the assessments"**

- Predicting venting scenario and safer venting procedures including prevention and mitigation measures for vent fire to explosion and flashback
- Accuracy verification for applied CFD tools to series of dispersion analysis
- Ergonomic evaluation for access routes to LH2 related equipment from safety perspective
- Prevention measures against BLEVE of the CCS
- Influences of small leaked LH2/GH2 in case of ERS activation
- Chain repercussion due to single failure of VMI system for CCS and VIP
- Possibility of negative pressure by Cryo-pumping effect of CCS
- Isolation philosophy and comprehensive hydrogen fire control
- Safety measures in case of blackout of the ship, etc.

#### Conclusion

- **ClassNK**
- The LH2C for pilot project in Japan has been designed, constructed and operated based on the requirements of IGC Code, Interim Recommendations issued by IMO, relevant hydrogen specific standards / guidelines, and various risk based approach (HAZID, HAZOP, FMEA etc.).
- Safe operation of the pilot LH2C will be verified in trials/tests phase for several months duration after delivery of the ship in 2020.
- The results of these studies would contribute to further development of commercial LH2C and consideration of amendment to IGC code and IGF code to include safety requirements intended for commercial hydrogen carriers and also use of hydrogen as ship fuel.
- ClassNK will update "Guidelines for Hydrogen Carriers" and "Guidelines for Fuel Cell On Board Ships" taking into account both the experience and technical developments.



# THAN KYOU

## for your kind attention