

95% OF EVERYTHING

FIRST EVER MARITIME GHG REDUCTION TARGETS

50% BY 2050

GUIDING PRINCIPLES:

- Reduce air emissions and health risks
- Remain competitive

- Support workforce
- Strong partnerships with stakeholders

GOODS MOVEMENT SECTORS:

Ships **Trains**

- Container Handling Equipment
- Trucks Harbor Craft

Seaport Air Quality 2020 and Beyond Plan

Final - June 13, 2019 The Pathway to Zero Emissions

MAIN GOALS

- Keep the port competitive and financially sustainable
- Minimize emissions of criteria air pollutant and TACs, with a focus on reducing diesel particulate matter
- Reduce GHG emissions
- Build and strengthen partnerships among the port, port tenants, equipment manufacturers, equipment owners and operators, community organizations, regulatory agencies, and the public
- Provide opportunities for meaningful stakeholder engagement

Electrification Value Drivers

Increased Efficiency

Reduced Maintenance Costs

Lower Compliance Costs

Electrification Value Drivers

CARBON REDUCTION

27.5 lb of CO₂ are produced for every gallon of diesel burned

Average fuel consumption of a top loader:

≈ 3.5 gallons/hour

 \rightarrow 96.3 lb CO₂/hour

At 3000 hours per year, each diesel top loader produces:

 $\approx 144 \text{ tons CO}_2/\text{yr}$

Nuvera is part of the

ELECTRIFICATION = EFFICIENCY

Application 1a

- > Fixed break periods
- Normal power consumption

Option 1a

- ▶ Large Li-Ion battery
- Conventional charging
- **>** Low to Medium duty cycle

Application 1b

- > Fixed break periods
- > Normal power consumption
- Opportunity charging

Option 1b

- Medium to Large Li-Ion battery
- Opportunity charging
- Medium duty cycle

Application 2

- > Irregular break periods
- Normal to High power consumption

Option 2

- Fuel Cell with Small Li-ion battery
- > Choice of charging system
- > Heavy duty cycle: 1 day w/o refill

OEM Approach for Ports and Terminal Operators

Data Collection Power & Energy

Virtual Vehicle Model

Sizing of Energy Source

Average:	Value:	Minimum:	Maximum:
[text]	[hr]	[hr]	[hr]
Run time per shift	3.4	1.3	4.2
Amount of shifts per day	3.1	1	4
Run time per day	10.6	1.3	15.7
Run time per week day	9.6	1.3	15
Run time per weekend day	12.7	7.6	15.7
Break time	3.7	0.6	15.9
Break during day	1.5	0.6	2.1
Break over night	8.5	3.5	15.9

DIVERSITY IN APPLICATIONS REQUIRE TAILORED TRUCK CONFIGURATIONS

Fuel Cell

Port Operations Duty Cycles: Yard & Dock

21% Idle 78% Driving & Hydraulics

Three breaks per eight-hour shift: 15 minutes | 90 minutes | 15 minutes

Requires 400 kWh

Port Operations Duty Cycles: Rail

3-6% Idle 93% Driving & Hydraulics

Up to seven hours no break

Requires 925 kWh

Electrification = Efficiency

Traction Energy Recovery

- 80 ton vehicle travelling at 14 mph
- 0.45 kWh kinetic energy

Hydraulic Energy Recovery

- 43 feet of lifting with 52 ton total load
- ➤ 1.8 kWh potential energy

cu

Fuel Cell Electric Hyster® Top Loader

Fuel Cell Electric Hyster® Top Loader

Funded in part by the California Air Resources Board supported by California Climate Investments

www.caclimateinvestments.ca.gov

Hydrogen Fast Fueling

ELECTRIFICATION = EFFICIENCY

- Diversity in applications require tailored truck configurations
- Battery and fuel cell hybrid trucks will be fit for every application
- Optimized sizing of batteries and hydrogen system linked with charging/refill strategy
- Smart energy recovery for maximum efficiency

