

An economically feasible approach toward a sustainable future

Stefano Cantarut
Segment Manager Cruise & Ferry

Just two examples

2009

Viking Lady 330kW fuel cell - 18'500rhs 500kWh ESS

https://www.youtube.com/watch?v=BmCPYotVBbM

2018

Victoria of Wight 408kWh ESS

https://www.youtube.com/watch?v=18k5XIABt-w

Not only engine's maker but also

System integrator

PUBLIC

Stefano Cantarut

You are here

1. Assess the actual situation

2. Set the path

Sustainable future

© Wärtsilä

It's a «diesel» world that is slowly changing toward LNG

Today world fleet fuel spread

(source Clarksons)

On a total of about 123'000 ships

Today world fleet fuel spread – power

(source Clarksons)

TCO – Total Cost of Ownership

The key parameter for decision making into the financial world 20y window for the marine business

Initial investment (CapEx)

Machinery costs included

Balance of plant NOT INCLUDED

Operating costs (OpEx)

Maintenance costs included

Fuel costs included

Fuel supply costs NOT INCLUDED

CapEx - energy producer only*

Expected lifetime

Efficiency

Fuel cells are 10-30 times more expensive, with an expected life time that is less than 1/10

*Indicative market prices

(initial CapEx + maintenance + fuel)

Stefano Cantarut

TCO at 20years: 982 MEUR

Note: worldwide availability of 20MW fuel cell?

Note: worldwide availability of enough hydrogen for 1 ship?

(initial CapEx + maintenance + fuel)

(initial CapEx + maintenance + fuel)

Note: LNG reciprocating engine emits 30% less CO2 emissions than Diesel

(initial CapEx + maintenance + fuel)

12

How to make a sustainable future economically accessible?

Not in one jump, we need middle steps!

Stefano Cantarut

Reciprocating engine running with hydrogen

- Reduced initial investment while fuel cell market would develop
- Possibility to run multiple fuels in order to reduce OpEx and operate worldwide while the hydrogen's supply chain would develop

Fuel Cells fueled with LNG

- ✓ Possibility to run with available fuels worldwide
- Lower TCO at 20y than hydrogen

Reciprocatin engines running with carbon neutral fuels (Liquid Bio Gas – LBG)

✓ Possibility to run with actual engine technology

✓ Almost Zero CO2 emission on the fuel cycle

Low fuel costs

CO₂

capture

Total cost of ownership - 20'000 kW installation - 5000 rhs/y (initial CapEx + maintenance + fuel)

Note

Used prices:

LNG: 350 EUR/ton HFO: 350 EUR/ton H2: 9500 EUR/ton

Multi fuel & multi technology optimized integrated system

Stefano Cantarut

Segment Manager Cruise & Ferry stefano.cantarut@wartsila.com
Mob: +39 366 6800475