

Fundación

Valenciaport

Figures

Main project topics and completed courses

01 The context

02 Decarbonization of heavy logistic industries

03 H2PORTS

04 Conclusions

ValenciaPort in figures

76,4 M Ton. Total Traffic in 2018

5,2 M TEU Containers Traffic in 2018

19.800 direct or indirect jobs in 2016

Indirect or related role in the generation of over **1.74 billion euros** in production in 2016

Container traffic Evolution

1996-2016 (Mio. TEUs)

Total Emissions in 2014

CO₂e emissions in kg

- Total emissions associated to electrical consumptions
- Total emissions associated to fuel consumptions
- Total emissions associated to transport
- Total emissions associated to vessel stops

NO₂ emissions in kg

- Total emissions associated to electrical consumptions
- Total emissions associated to fuel consumptions
- Total emissions associated to transport
- Total emissions associated to vessel stops

Source: Own elaboration based on Valenciaport Carbon Footprint

01 The context

02 Decarbonization of heavy logistic industries

03 H2PORTS

04 Conclusions

Port Container Terminals. Energy Profile

Port Container Terminals have been studied with the aim of obtaining their energy profiles and the global carbon footprint produced, taking into account the activities carried out by the whole group of machinery and equipment involved.

The aim is to characterise PCTs energy profiles by means of the evaluation of the energy performance of their activities and processes, thus quantifying their impact in terms of GHG emissions.

How much energy is consumed?

Where is the energy consumed?

How Much Energy? Fuel Consumption

Total Fuel Consumption 2012

Carbon Footprint (Fuel)

6,986,564 L

7.57 kg CO₂eq / TEU

Decarbonization in Port Container Operation

- 1. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 2. Next Step: Hydrogen

LNG Terminal Tractor Prototype

LNG Terminal Tractor. Design Requirements

Decarbonization in Port Container Operation

- 1. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 2. Next Step: Hydrogen

Full Electrical Tractor

Batteries

Traction battery capacity 206[kWh]
Traction battery type Lithium Iron Phosphate
Nominal voltage 299 [V] (260-380 Volt)
Current 700Ah

Driveline

Power/torque 160/180 hp @ 1800-2800 RPM 633/712 Nm @0-1800 RPM

Autonomy

6 hours (1 operational shift)

Recharging Time

Between 3-5 hours (depending on plug type)

LNG vs Electrification

LNG Terminal Truck

Refuelling time similar to Diesel Equipment cost similar to Diesel LNG availability Less Autonomy than Diesel Not Zero-Emission solution

Full Electric Terminal Truck

Zero-Emission solution Electricity price lower than Diesel Charging time higher than Diesel refuelling

Low autonomy (less than 6 hours) Equipment cost much higher than Diesel

01 The context

02 Decarbonization of heavy logistic industries

03 H2PORTS

04 Conclusions

Decarbonization in Port Container Operation

- 1. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 2. Next Step: Hydrogen

Towards Zero-Emissions Operations in Ports

Research institutions

End users

Industry

Challenges for the Implementation of H2 in

- Certification of the equipment
- Hydrogen distribution model according our particularities
- Suitable location inside/outside the terminal?
- Protection against fire
- Training staff
- Emergency protocols
- Permitting
- City Perception

01 The context

02 Decarbonization of heavy logistic industries

03 H2PORTS

04 Conclusions

- Port container operations can (and must) be decarbonised: electrification and low carbon / zero-emission fuels;
- This task is challenging: not all port operators are prepared for making the transition towards zero-emission solutions;
- There are knowledge and awareness gaps in the port industry about zeroemission alternatives. Need to bridge the gaps with successful stories;
- Need for cooperative innovation among technology providers and end users;
- Financial feasibility and short pay-backs are critical factors for real implementation of disruptive technologies (like Hydrogen).

