

German Government Perspectives on Hydrogen at Ports and At-Sea Marine Applications

Erik Schumacher

Divisional Head Stationary Fuel Cells and Fuel Cells in Ship Applications | NOW GmbH

H2@Ports Workshop Sept. 10, 2019 | San Francisco, CA

TOWARDS ZERO EMISSION MOBILITY

Integrated implementation of national funding programs by NOW GmbH

2 |

GERMAN GOVERNMENT PERSPEKTIVE

Current German Government's coalition agreement:

"At national level, we want to strengthen and stabilize our technology-open initiatives for alternative propulsion and energy sources in shipping and in ports (LNG, Hydrogen / fuel cell, methanol, electromobility)."

=> Technology-open, but focus on H₂ & Fuel Cells, Methanol, Electromobility

Current funding initiative:

National Innovation Program for Hydrogen and Fuel Cell Technology (NIP)

📕 З |

FUEL CELLS IN SHIPS - NIP R&D PROJECTS 2009 – TO DATE

e4ships Project Cluster - <u>www.e4ships.de/english-1/</u>

	SchIBZ2	MultiSchIBZ	Pa-X-ell	RiverCell	ELEKTRA	FC Ship Propulsion
Project Management:	ThyssenKrupp Marine Systems	ThyssenKrupp Marine Systems	Meyer Shipyard	Meyer Shipyard	TU Berlin	Humphry Marine
Application Area Focus:	Sea	Sea	Sea	Inland	Inland	Inland
Application Focus:	Multi Purpose Vessels, Yachts	Multi Purpose Vessels, Yachts	Cruise Ship	River Cruise Ship	Tug Boat	Leisure Boat
Usage Focus:	Power Supply	Power Supply	Power Supply	Power Supply & Propulsion	Power Supply & Propulsion	Power Supply & Propulsion
Fuel:	Diesel	Diesel; LNG	Methanol; LNG	Methanol	H ₂	H ₂

= 4 |

ELEKTRA PROJECT

Elskir

Example for Ship and Port Operation with Fuel Cells

Main Dimensions

Length	20,00 m		
Width	8,20 m		
Depth	1,25 m		
Weight	ca. 150 t		

Propulsion 2 x 210 kW 3 x 100 kW Fuel Cell 750 kg H₂ on board 2 x 1025 kWh Battery Local transport within Berlin

Range extended operation

- Berlin <-> Hamburg, Berlin <-> Stettin •
- min. range 130 km per day •
- 16 h of operation per day
- speed requirement 8,5 km/h, max. 10 km/h •

LESSONS LEARNED ON EARLY FUEL CELL MARITIME PROJECTS

"Alsterwasser" – Sightseeing Passenger Ship in Hamburg

Operational: 2008 – 2013 (no NIP-Project)

Lessons learned:

Application and Infrastructure MUST go together

H 6047

- Cost have to be lowered
- Although the project was a success, it didn't cause a "rush" on fuel cells in maritime applications

Propulsion

Proton Motor turnkey propulsion system for FCS Alsterwasser, launched August 2008 by Alstertouristik GmbH in Hamburg.

More than 14,000 passengers in one ye

ALSTERWASSER

motor 100 kW

uffer Batter

60 V. 360 AM

Fuel Cell System

Power

electronics

'PM Basic A 50 maritime I8kW peak power

Bow thruste

20 kW

TO ADDRESS LESSONS LEARNED

Study "Renewable Energy for Fuel Cells in Inland Vessels" – to be published ~ November 2019 NOW-GMBH.DE

- Identify "germ cells" for fuel cells in ships by matching:
- renewable energy sources
- frequented shipping routes
- port locations
- cities with high emissions
- TCO analysis for various ship types and various renewable fuels
- Use study to educate relevant stakeholders about the technology

= 7 |

TECHNOLOGICAL CHALLENGES

Stack & System:

- still R&D needed for SOFC- and HT PEM- fuel cells as well as for reformer technology
- not many technological gaps for H₂ and PEM fuel cells => it works, high TRL

Infrastructure and Fuels:

- local and global availability of H₂ and other alternative fuels
- H₂:
 - pressurized, cryogenic, LOHC?
 - pressure level (350, 500, 700 bar)?
 - interface to refueling station
 - safe and low cost refueling procedure
 - standardization

Applications:

- individual design and construction of ships and fuel cell propulsion systems => economies of scale harder to achieve as in other traffic-sectors (i.e. FC cars, busses, heavy duty,...)
- lack of port-specific applications (push-trucks, heavy duty lift trucks,...)

8 |

REGULATORY CHALLENGES AND BARRIERS RELATED TO SAFETY, CODES AND STANDARDS

Activities of the e4ships – projects concerning safety, codes and standards are bundled by e4ships-Cluster-Management:

- · Development and proposal of regulations for seagoing- and inland- vessels
- Communication with Flagstate

e4ships' IMO Roadmap for maritime application of fuel cell

9 |

Thank you for your attention!

Erik Schumacher

erik.schumacher@now-gmbh.de