

Hydrogen Maritime applications EU Policy Perspective

H²@Ports Workshop San Francisco, 10 Sept 2019

Robert Missen

Head of Unit, Research & Innovation

DG Mobility & Transport, European Commission

Challenges

- Transport and connectivity are essential for the EU economy.
- Transport is responsible for almost a quarter of EU GHG emissions and the main cause of reduced air quality in cities.
- In the EU, transport is likely to be the largest emitter of CO2 after 2030.
- Maritime transport is estimated to be responsible for about 2.5% of global greenhouse gas emissions.
- To meet our commitment under the Paris Agreement and the 2030 goals transport emissions in 2050 should be at least 60% lower than in 1990.

The EU Alternative Fuels Infrastructure Legislation

Directive 2014/94/EU

Requires a minimum infrastructure to be implemented through national policy frameworks for:

Electricity: publicly accessible recharging points to be built by 2020 to allow the circulation of EVs Union-wide, both in urban and sub-urban areas, as well as by 2025 on the TEN-T Core Network.

Liquefied Natural Gas (LNG): publicly accessible Natural gas/bio-methane refuelling points for road vehicles and ships/vessels, with common standards, on the TEN-T Core Network by 2025;

Compressed Natural Gas
(CNG): publicly accessible
refuelling points to allow the
circulation of CNG vehicles
Union-wide, both in urban
and sub-urban areas, by
2020, as well as on the TEN-T
Core Network, by 2025;

Hydrogen: sufficient number of publicly accessible refuelling points by 2025, with common standards, in the Member States who opt for hydrogen infrastructure.

How International Shipping Needs To Decarbonise

The International
Maritime Organization
(IMO) has committed to
reducing greenhouse gas
(GHG) emissions by from
international shipping at
least 50% by 2050
(compared to 2008
emissions), with a strong
emphasis on reaching
zero emissions.

LNG - a blueprint for Hydrogen?

Further work is needed to transition the maritime industry to zero-carbon fuels

Scale up production of renewable energy production & zero-carbon fuels Infrastructure Improve availability and reduce costs Scale up deployment of zero- emission Ship level vessels Develop supportive policy, standards and Regulations rules

Developing the framework for hydrogen as marine fuel

R&D

Experience from LNG

Marine Fuel

Cross Sector Experience

General

- (EX) zones for hydrogen
- Embrittlement
- Risk of autoignition
- Safety relief valves
- · Diffusion and trapping
- Safety Concepts

Liquid Hydrogen

- LH2 Storage Technology
- Release of hydrogen
- Pressure build-up due to rapid vaporization
- Low temperature effects.
- Ignition of 'oxygen snow'
- Vacuum loss
- Sloshing in tank

Gaseous Hydrogen

- CH2 Storage Technology
- Release of hydrogen
- Pressure management
- Ignition mechanisms

Thank you for your attention!

Robert.missen@ec.europa.eu

