

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen and Fuel Cells Overview: Opportunities for Ports & Maritime Applications

Dr. Sunita Satyapal, Director, Fuel Cell Technologies Office

U.S. Department of Energy

H2@Ports Workshop

San Francisco, CA – September 10, 2019

Energy Policy Act (2005) Title VIII on Hydrogen

Authorizes U.S. DOE to lead a comprehensive program to enable commercialization of hydrogen and fuel cells with industry. Includes broad applications: Transportation, utility, industrial, portable, stationary, etc.

Program To-Date

- ~ \$150M to \$250M/year
- ~ 100 to 200+ Projects/year
- >100 Organizations

Includes RD&D on:

- H₂ production, delivery, storage, utilization (including fuel cells)
- Crosscutting: Analysis, systems development/integration, safety, codes and standards, education & outreach

Collaboration

- Federal and State Agencies
- Industry
- Regional partnerships, associations, trade organizations, codes and standards development organizations, etc.
- National labs, institutes, universities
- International

Fuel Cell Shipments - Growth by Application

* Revenue from publicly available

Source: DOE and E4Tech

Commercial Hydrogen and Fuel Cell Technologies are now Available

Over 300,000 stationary fuel cells, 12,000 fuel cell cars, 300 stations worldwide. Heavy duty, rail, marine, aviation emerging.

Hydrogen is part of a Comprehensive Energy Strategy

Transportation Is Now #1 Emissions Contributor

SOURCE: United States Environment Protection Agency

Hydrogen Fuel Cell Technologies for Marine Applications

Hydrogen can be used as a zero-emission fuel for marine & port applications

IMO Marine Fuel Sulfur Limits

<u>Today's maritime industry:</u>

- Consists of about 2 million marine vessels worldwide
- Transports >90% of goods
- Consumes over 300 million tonnes of fuel consumed/year
- Produces 3% of global CO₂ emissions
- Constitutes the largest source of SO_x emissions

Hydrogen and ammonia are being pursued internationally as potential renewable, zero-emission marine fuels

Source: Zhen, L., Li, M., Hu, Z., Lv, W., & Zhao, X. (2018). The effects of emission control area regulations on cruise shipping. Transportation Research Part D: Transport and Environment, 62, 47-63.

Electricity Mix is Changing

Source: ERCOT, DOE H2@Scale Workshop, TX

Example: Hydrogen can help address grid needs

Preliminary study shows electrolyzers can reduce amplitude of power fluctuations in a grid with high renewables

With Electrolyzers

Source: D. Murphy, et al, NREL and INL. Specific case with high solar penetration and electrolyzers used to compensate for power fluctuations

Hydrogen can enable long term energy storage and grid services

Hydrogen can be used to monetize surplus electricity from the grid, or remote, offgrid energy feedstock(e.g. solar, wind) for days to months.

Co-location of production and use can address delivery cost roadblock

Where hydrogen is available

NU FISERY

H₂@Rail and H₂@Ports Initiatives

U.S. DOE in collaboration with:

- Dept. of Transportation (DOT) Federal Railroad Administration
- DOT-Maritime Administration

Data Centers and Energy Storage Applications

H2@Ports

Scale up Hydrogen

Source: EPA National Port Strategy Assessment, 2016; http://ad.apta.com/mc/rail/previous/2010/Papers/Demonstration-of-a-Hydrogen-Fuel-Cell-Locomotive.pdf

In collaboration with U.S. MARAD, developed and tested hydrogen fuel cell power generator

Next Step

Maritime fuel cell generator will be field tested at Scripps Institution of Oceanography in San Diego for cold ironing application

Full report available at:

https://www.energy.gov/sites/prod/files/2017/07/f3 5/fcto_maritime_fc_generator_2017.pdf Model analysis validated in field experiment testing: ~30% energy efficiency gain over diesel engine at part loads

100kW fuel cell power system

FUEL CELL TECHNOLOGIES OFFICE

Refrigerated containers

Scripps location for MarFC generator

"Clustering" FCEVs Can Drive H2 Demand in Port-Based Distribution Complexes

Representative Port-Based Industrial Complex with Hydrogen Cost < \$6/kg "Hub and Spoke" H2 Fueling Stations Connected by Pipelines

Fuel Consumption at Ports based on Application

Potential Hydrogen Demand at U.S. Ports

Collaboration &

Resources

International Collaborations

New Global Safety Partnership: Center for H2 Safety launched 2019

IPHE Steering Committee emphasized need to increase visibility of CHS

See <u>www.aiche.org/CHS</u> to join

Maritime applications can enable large scale use of H₂. This aligns with H2@Scale and can enable energy security, economic value and environmental benefits.

Next Steps

- Conduct analysis on H₂ and fuel cells maritime applications.
 TCO (underway), impact potential (petroleum, emissions reductions, etc.)
- Develop technical and cost targets.
- Identify barriers and opportunities for RD&D and addressing regulations, codes and standards
- Focus on global collaborations to accelerate progress.

Identify R&D needs to accelerate technology development, address barriers to commercialization, identify opportunities for collaboration.

Goals:

- Assess the state of the art for maritime applications using hydrogen fuel cells
- Discuss operational requirements and lessons learned on early fuel cell maritime projects
- Understand current technology gaps and identify collaborative R&D opportunities
- Identify regulatory, and safety, codes and standards issues to develop path forward to address them

Opportunities for outreach and to increase awareness

Celebrate National Hydrogen & Fuel Cell Day October 8 or 10/08

(Held on its very own atomic- weight-day)

Hydrogen

1.008

Information and Training Resources to Increase Awareness

H2tools.org

Save the Date: May 19-22, 2020 Annual Merit Review Washington DC

Learn more at: energy.gov/eere/fuelcells

Thank You!

Sunita Satyapal

Director Fuel Cell Technologies Office <u>Sunita.satyapal@ee.doe.gov</u>

www.hydrogen.energy.gov