

The North American SynchroPhasor Initiative (NASPI): Status and Path Forward

Jeff Dagle, PE

Chief Electrical Engineer Pacific Northwest National Laboratory Electricity Infrastructure Resilience +1(509)375-3629 jeff@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

The North American SynchroPhasor Initiative (NASPI)

The U.S. Department of Energy (DOE) and EPRI are working together closely with industry to enable wide-area time-synchronized measurements that will enhance the reliability of the electric power grid through improved situational awareness and other applications.

Current and emerging areas of emphasis/focus for NASPI:

- Networking and communications technologies (advanced architectures)
- Statistical analysis and deep learning for extracting actionable information from large datasets
- High-speed "point-on-wave" measurements to characterize the transient behavior of inverterbased resources and other fast-acting phenomena

"Better information supports better - and faster - decisions."

NASPI Current Status

- Technical Task Teams (comprised of, and led by, key industry stakeholders)
 - Control Room Solutions
 - Data & Network Management
 - Distribution
 - Engineering Analysis
 - Performance Requirements, Standards & Verification
- Work Group Meetings (twice per year, typical attendance = 200)
 - Most recent: April 2019 San Diego, CA
 - ✓ Networking and communications technical workshop
 - ✓ Statistical analysis and deep learning
 - ✓ Point-on-wave measurements
 - Upcoming: October 2019 Richmond, VA April 2020 Minneapolis, MN

Path Forward

- Continue to support and liaison with "mainstream" synchrophasor activities IEEE, NERC, WECC, etc.
- No substantial structural changes envisioned to the structure of the NASPI leadership team, task teams, or meeting tempo
 - We will strive to maintain approximately equal representation among utilities, vendors, and academia, a unique attribute and key value proposition for NASPI
- Current and emerging areas of emphasis/focus for NASPI:
 - Networking and communications technologies (advanced architectures)
 - Statistical analysis and deep learning for extracting actionable information from large datasets
 - High-speed "point-on-wave" measurements to characterize the transient behavior of inverter-based resources and other fast-acting phenomena
- DOE is considering leveraging NASPI for additional programmatic linkages including sensors and protection

The "Goodness of Fit Concept" – A nascent approach under development for understanding when point-on-wave Pacific Northwest measurements should augment traditional synchrophasors

Goodness of Fit can be low for various reasons:

- Noise in the measured signal, especially at low currents (low Signal to Noise Ratio)
- Distorted waveforms, particularly during the first or last cycle of faults
- DC offsets (decaying DC) during the early cycles of faults with long time constants
- Distortions due to instrument transformer saturation
- Distorted waveforms during high-impedance faults

- 200
- 150 GoF(dB) 10050
- 0

Conclusions

- Precise timing is widely used to support synchrophasor applications in the electric power sector
- Synchrophasors have long been used for important applications, such as validating power system dynamic models
- There are emerging applications being deployed that utilize synchrophasors for operational applications
- Various research initiatives are underway that will continue to introduce advanced technology to solve planning and operational challenges
- There is an emerging need to support additional high-speed "point on wave" measurements to characterize the behavior of inverter-based resources during off-normal conditions

https://www.naspi.org/

Thank you

