
Verification of the NCERC Starch and Cellulose Methods for Testing Corn Matrix Samples Using Flask Fermentation

National Corn to Ethanol Research Center Southern Illinois University Edwardsville

Carbon Balance on Ethanol Fermentation

Flask Fermentation as Evaluation Criteria (calculate carbon balance)

Before Conversion (BC)

Starch and cellulose method on corn slurry samples

After Conversion (AC)

Carbon Dioxide (CO₂)- weight loss method Ethanol (EtOH) - NCERC method By products (BY) - HPLC method Residual sugars (RS) - starch method Residual cellulose (RC) - cellulose method Yeast (Yeast) – yeast counting + literature

Carbon Balance on Ethanol Fermentation (1 G)

No. of Flasks (Cg/flask)	BC	CO ₂	EtOH	BY	RS	Yeast	Total AC	Percent Recovery (%)
6	15.1	4.2	8.0	0.6	0.6	0.9	14.2	94
(±)	0.0	0.1	0.1	0.0	0.1	0.1	0.3	2
3	14.4	4.0	7.6	0.6	1.0	0.8	14.0	98
(±)	0.0	0.1	0.1	0.0	0.0	0.2	0.1	1
4	14.1	4.0	8.1	0.6	0.9	1.2	14.8	105
(±)	0.0	0.0	0.0	0.0	0.1	0.2	0.3	2

Carbon Balance on Ethanol Fermentation (pure cellulose)

Flask # (C g/flask)	BC	CO ₂	EtOH	BY	RC	Yeast	Total AC	Percent Recovery (%)
4	2.2	0.2	0.3	0.0	1.8	0.1	2.4	106
5	2.2	0.2	0.3	0.0	1.8	0.1	2.4	107

Carbon Balance on Ethanol Fermentation (1.5G)

Flask # (C g/flask)		BC (RC)	CO2	EtOH	BY	RS	RC	Yeast	Total AC	Percent Recovery (%)
7	0.6	0.9	0.2	0.4	N.A.*	0.5	0.1	N.A.	1.2	82
10	0.6	0.9	0.2	0.4	N.A.	0.2	0.4	N.A.	1.2	83
12	0.6	0.9	0.2	0.4	N.A.	0.5	0.3	N.A.	1.4	94

*N.A., not available for now

Summary on Mass Balance for Corn to Ethanol Fermentation

- Provided an independent criteria to evaluate the accuracy of testing starch and cellulose in the before and after conversion samples
- Provide scientifically sound ethanol production data for the industry
- Provide in-depth analysis of fermentation processing, especially for trouble shooting

More Innovative Work at NCERC

Using lab scale in situ fermentation:

- Existing data support increase of ethanol and CO₂ production after just dosing cellulase
- 2. Both hemicellulose and cellulose data of AC samples suggested cellulosic conversion, but with batch-to-batch variation
- 3. Explore the possibility of mild condition pretreatment to increase the cellulosic conversion

Acknowledgement

NCERC Lab Analysts, GAs Student Workers Scientists