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Near-term opportunities for CO, capture
and sequestration from existing
biorefineries in the United States

The UC Berkeley Carbon Removal Laboratory

5 Based on Sanchez et al. PNAS (2018)
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Motivation (2)

e Existing infrastructure and
deployments

 Markets: beverage carbonation,
dry ice, chemicals, pH reduction

* U.S. merchant CO, market: ~10
million tons

* Current sequestration: ~1
MtCO,/yr
— Estimated cost: $35/ton




Motivation (3)




Scale (mtco,/yr)

Dedicated geological storage (worldwide, 2016): 3.7
Enhanced oil recovery (anthropogenic, worldwide, 2016): 28
Total ethanol (fermentation) resource (US): 45

Total ethanol resource (worldwide, 2015): 73

Total enhanced oil recovery (worldwide): ~80
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Problem statement

We study the abatement potential and costs of near-term biogenic CO,
capture and sequestration from biorefineries in the United States using
process engineering, spatial optimization, and lifecycle assessment

1

Estimate CO, volumes, and capture, Calculate emissions impacts and
compression, transportation, and abatement costs for CA's Low
sequestration costs Carbon Fuel Standard and other
policies

Minimize total costs of CCS network
via integer programming over range
of feasible policy incentives
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12 Sanchez et al. PNAS (2018)
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Optimal spatial capture, transportation, and sequestration networks
for sequestration credits of $30, $60, and $90 / tCO,, at the scale of
the United States, and focusing on the Midwest United States
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Infrastructure Design
$30/ ton ’ A \ /ﬁ*‘

{ 3 ¢\ r
W N T e oy /N
‘ '\ | \ fapa? s T et |
CO, Stored: 6.2 Mt CO,/yr L / | AN o %
L S NEe g
H H H j ) N l' \ i ) \ f& /(L = s &{s
Biorefineries: 10 / ;N = \ 2 VY A )
/ i \~—\ \, _— — = AN
/ f \ \ - i{" \ﬂ/\ , e 4\\\ S /4\ )\Y\\\/v//’//\\iw; <\2§§b
CO, Pipeline: 430 miles j “‘\rml_ — \( | %\ \ S \
o FI ‘ . | 2o T TN S %

N e : \ A /
| \ \ \\ S
\i \\\ {( L ‘I‘ /\\ ’\ ;f{ \ \\\ \.7
B \ | " R e‘ |
s N N / \ 4 e N o— \\
\ \ § \ J/ \ & . .—/ & N
. T i = | \\ t | pmmsaeam . —d ~ \\
*  Biofuel Plant CO2 Pipeline 10-inch = B ) ¥ J \\
i e 0\ - \g \
o CO2 Injection Site P1ameter 44 inch - W . g <
. . - ) \ s o e A
Saline Aquifer S p— 18-inch Ll “\\ Y o
4-inch 22-inch \\ (/ 2
-. \
6-nch ____ o6-inch )
8-inch —




430/t ' | ca s
” -. - $30

*  Biofuel Plant CO2 Pipeline 10-inch ) .
4 CO2 Injection Site Diameter 414 ihen | - =
Saline Aquifer dneh g inch
ainch ____ 5oinch
6inch ____ 6.inch
8-inch




S$60/ton
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$90/ton
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Policy drivers
and
policy impacts




Carbon sequestration tax credits

 FUTURE Act (S. 1535):

— Previous law: ~$20/tCO, for permanent sequestration, $10 for enhanced oil
recovery, 500 kt/yr minimum, likely fully subscribed

— Current law: up to $50/tCO, tax credit (45Q) sequestered, 12-year duration
— No credit cap, ~25 kt/yr minimum
— Signed into law February 2018 after several years of effort

e Liken to sequestration credit
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"\" CARBON CAPTURE
- COALITION
Carbon Capture Coalition Launches to Further

Adoption of Carbon Capture Technologies as a
National Energy, Economic and Environmental

Strategy

February 23, 2018 | News

National Enhanced Oil Recovery Initiative Adopts New Brand
and Adds New Members
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e
Low Carbon Fuel Standards

e California Low Carbon Fuel Standard
— Uncertain price, currently $125 - 195/tCO, abated
— Price cap: $200/ton
— Limited market size
— Recently adopted: quantification and permanence methodologies for CCS

— Recently adopted: extension through 2030, with tightening of cap

e Additional markets: Oregon, British Columbia

— Soon: Canada and Brazil
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Conclusions about U.S. Market Opportunities

* Low-cost CCS opportunities exist at biorefineries around the United States

* Aggregation of CO, in integrated pipeline networks enable cost-effective
sequestration

* Near-term policy could be sufficient to incentivize up to ~45 MtCO,/yr of
sequestration

This financial opportunity can catalyze the growth of carbon capture,
transport, utilization, and sequestration, improve the lifecycle
impacts of conventional biofuels, and help fulfill the mandates of low-
carbon fuel policies across the U.S.
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Occidental Petroleum and White Energy to Study Feasibility of
Capturing CO; for Use in Enhanced Oil Recovery Operations

June 19, 2018 09:00 AM Eastern Daylight Time

“"The carbon capture project would be designed

to be eligible for 45Q tax credits and
California’s Low Carbon Fuel Standard Carbon

Capture and Storage protocol, both currently in
development, demonstrating that these important
incentives result in near-term investment,

reduced CO2 emissions and jobs."
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The Washington Post

Democracy Dies in Darkness

Energy and Environment

The world needs to store
billions of tons of carbon. It
could start in a surprising

A wagon adds freshly gathered corn cobs to a pile on a farm near Hurley, S.D., in 2007.
(Dirk Lammers/AP)

The corn-based ethanol industry could become a
place ° surprising leader in a technology that the world
needs to fight climate change, an economic analysis

By Chris Mooney 5 Email the author published Monday suggests — a development that
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Questions for audience

 Why haven’t we seen more projects announced?
— Uncertainty around 45Q implementation?
— Stringency of California CCS protocol?
— Permitting of CCS pipelines?
— Lack of knowledge of CCS within industry?
* What could make this realistic?
— Trucking of CO,?
— Smaller-scale utilization options?
— Regional storage hubs?

* How much CO, is already captured for merchant markets?




