Sustainable Dicyclopentadiene

September 25, 2019

William L. Kubic, Jr.

Andrew D. Sutton, Cameron M. Moore, Troy A. Semelsberger, and Xiaokum (Claire) Yang

Los Alamos National Laboratory Los Alamos, New Mexico 87545

Los Alamos National Laboratory

Dicyclopentadiene (DCPD)

- Current Source
 - Produced from pyrolysis gasoline, a byproduct of ethylene production
 - Current US demand about 160,000 tonne per year
 - Current prices are between \$1800 and \$2500 per tonne depending on the purity
- Current uses
 - Polymers
 - Flame retardants
 - High energy density fuel
 - Specialty products

endo-DCPD

exo-DCPD

Motivation for Bio-DCPD

- The ongoing shift from naphtha cracking to ethane cracking for ethylene is reducing supply of pyrolysis gasoline
- Potentially a renewable source of structural polymers (polyDCPD)
- Renewable source of high energy density fuels for the military

Pathways to Bio Dicyclopentadiene

Los Alamos National Laboratory

Need an Economical Source of Furfural

- Corn bran and fiber identified as potential source of furfural
 - High hemicellulose content relative to alternatives
 - Requires no additional harvesting
 - Byproducts of corn ethanol
 - Can be incorporated into an integrated biorefinery

- Potential supply of corn bran and fiber sufficient to meet furfural and DCPD demand
 - World furfural demand projected to reach 590,000 tonne/year in 2020
 - US DCPD demand is about 160,000 tonne/year

Rough Estimate of Availability, Costs, and Yields

Feedstock	Availability (million tonne/yr)	Hemicellulose Yield (million tonne/yr)	Cost of Hemicellulose (\$/tonne)	Furfural Yield (tonne/yr)	DCPD Yield (tonne/yr)
Corn Stover	81	16	\$375	6,800,000	3,600,000
Corn Cobs	37	14	\$260	5,900,000	3,100,000
Corn Bran	10	4	\$125	1,800,000	970,000
Corn Fiber	4	1.6	\$140	640,000	350,000

Project Summary

Experimental

- Verify reaction chemistry
- Demonstrate reactions in continuous flow reactor
- Optimize catalysts and reaction conditions
- Process Engineering
 - Develop process flow diagrams for furfural and DCPE
 - Perform techno-economic analysis (TEA) for the process

Progress

- Demonstrated synthesis of DCPD from furfural
- Heterogeneous and gas phase reactions being tested in flow reactor
- Preliminary TEA completed
 - Transfer price for furfural is \$865/tonne
 - Minimum selling price for high-purity DCPD is \$2140/tonne

Furfural Production Cost

Los Alamos National Laboratory