Solar Energy Forecasting Advances and Impacts on Grid Integration

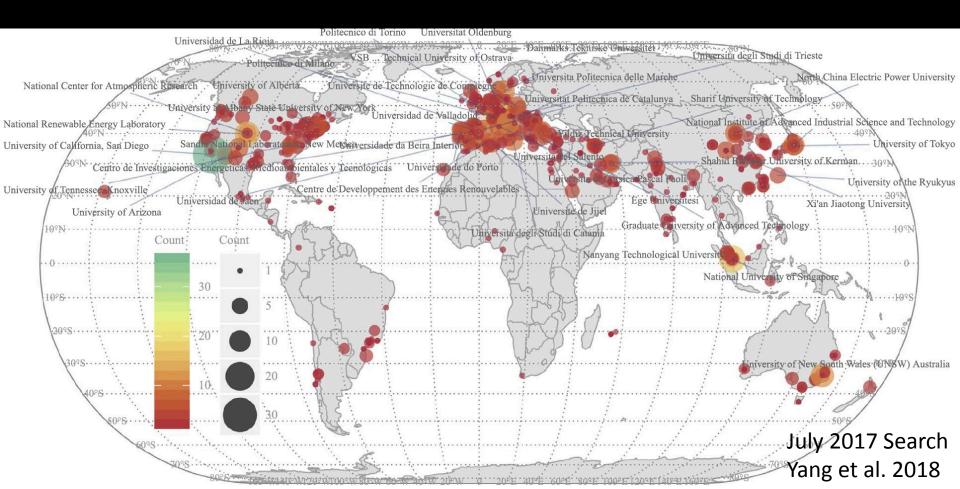
Jan Kleissl University of California, San Diego

Deputy Editor, AIP Journal of Renewable and Sustainable Energy

The Solar and Wind Resourcing and Integration Journal

Charge

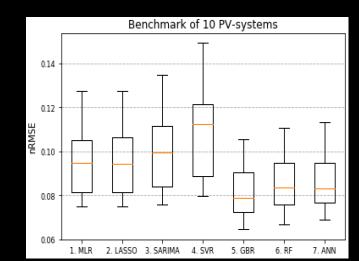
Review progress in solar forecasting since 2016 outside of the DOE Solar Forecasting II work.



What has changed (or not) since 2016?

- NWP:
 - ECMWF still performs best globally
- Satellite:
 - GOES-R
 - Data driven approaches
- Sky imager forecasting deemphasized
- Statistical models:
 - Maxed out forecast skill
 - Ensembling
- More probabilistic forecasting

Lennard Visser, 2019 IEEE PVSC



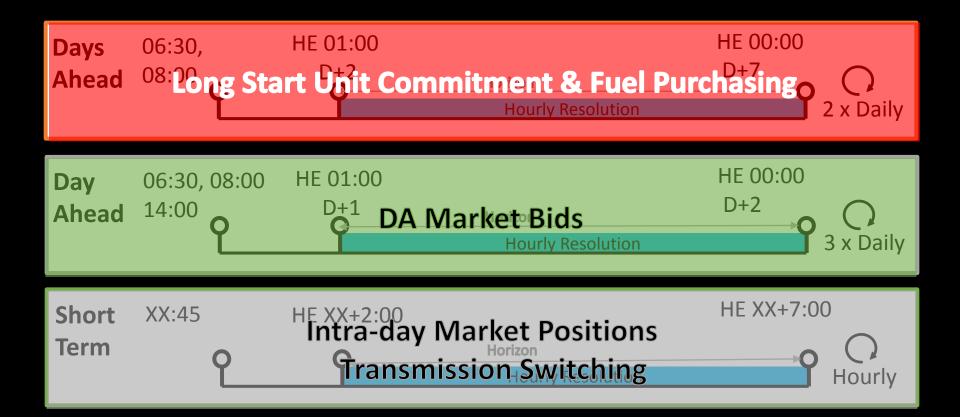
Recent Review Papers

- Yang, D., A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES), J. Renewable Sustainable Energy, 2019.
- Yang, D., et al., Verification of deterministic solar forecasts, Solar Energy, in preparation, 2020.
- van der Meer, D., Widén, J., Munkhammar, J., 2018. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renewable and Sustainable Energy Reviews 81, 1484 – 1512.

Tools

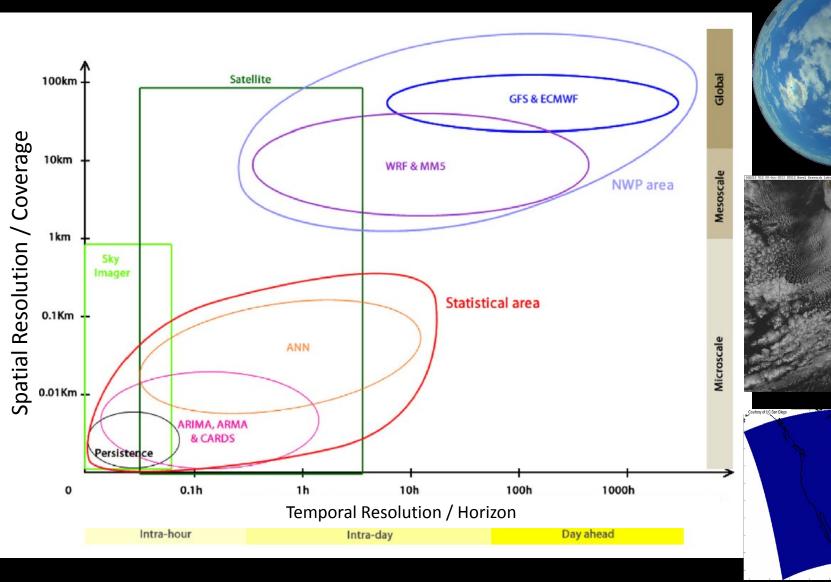
- Quality Control Method for PV data:
 - Killinger, S., Engerer, N., Müller, B., 2017. QCPV: A quality control algorithm for distributed photovoltaic array power output. Solar Energy 143, 120–131. <u>http://dx.doi</u>.org/10.1016/j.solener.2016.12.053.
- Quality controlled datasets with code:
 - OpenSolar: Promoting the openness and accessibility of diverse public solar datasets, C Feng, D Yang, BM Hodge, J Zhang, Solar Energy 188, 1369-1379
 - SolarData package update v1. 1: R functions for easy access of Baseline Surface Radiation Network (BSRN), D Yang, Solar Energy 188, 970-975

Time Horizons for Energy Markets



Lannoye, Tuohy, EPRI (2015)

Solar Forecast Types and Horizons



Diagne et al., 2013, Inman et al., 2013

Outline

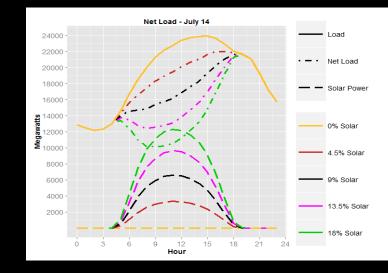
- Value of Solar Forecasting Case Study
 - Day-ahead forecast for unit commitment
- Advances in Solar Forecasting Techniques
- Solar Forecast Publishing Paradigm with Example
- Conclusions and Future Directions

Value of Day-Ahead Solar Forecasting

- What is the value of improving DA solar power forecasts?
- And what are the impacts on bulk power system operations?

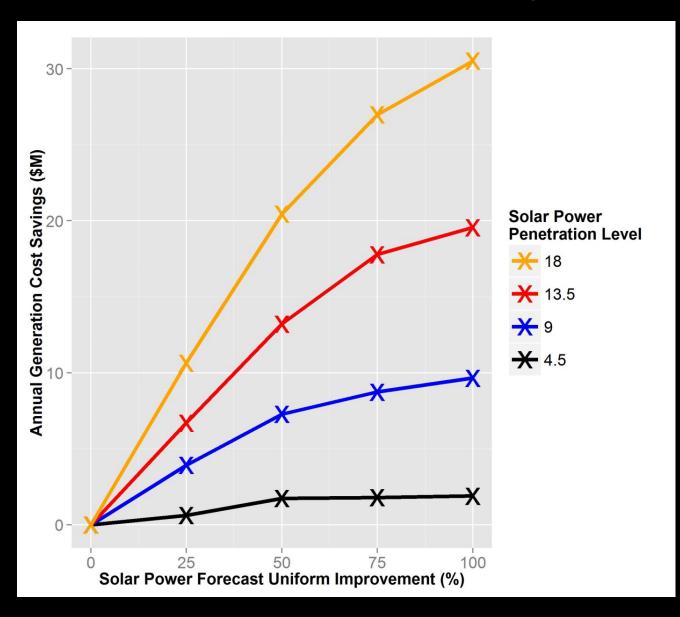
Scenarios for each solar energy penetration level (4.5% / 9.0% / 13.5% / 18.0%)

- DA forecasts: 25% uniform improvement
- DA forecasts: 50% uniform improvement
- DA forecasts: 75% uniform improvement
- DA forecasts: 100% uniform improvement



Carlo Brancucci Martinez-Anido et al, 2016

Value of DA Solar Power Forecasting Improvement for ~20 GW ISO New England

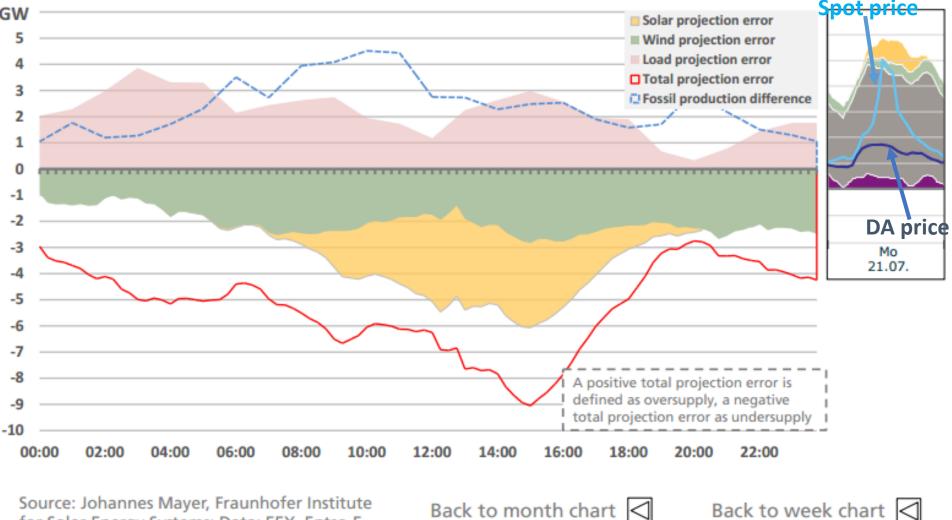


and in reality ...

Impact of DA Forecast Errors on Intraday Spot Pricing in Germany

Analysis of the high Intraday prices on 21.07.2014 Overforecast Event

Actual production/load minus projected production/load (from day before)



for Solar Energy Systems; Data: EEX, Entso-E

🜌 Fraunhofer ISE

C Fraunhofer ISE

90

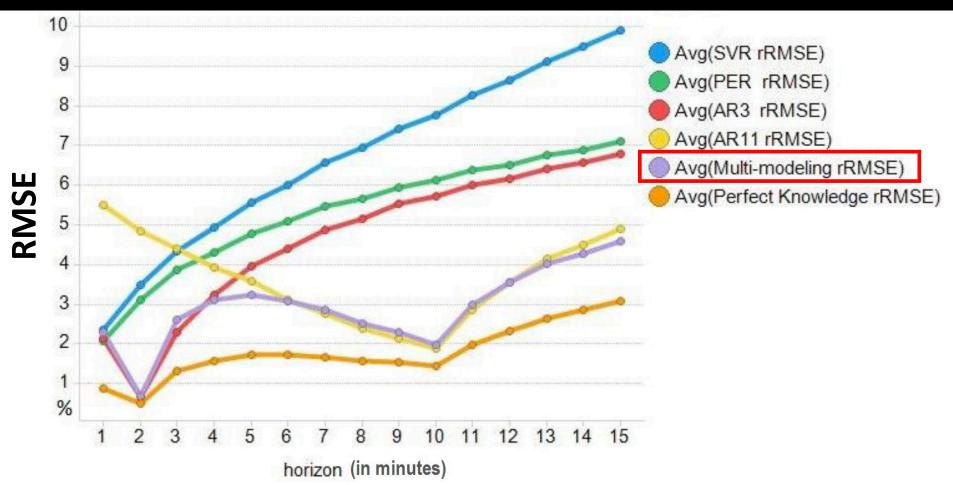
Progress

Literature Review Outside the US

Sanfilippo et al. (2016)

Ensembling

Combining different models – Supervised Classification



Deep Learning Methods

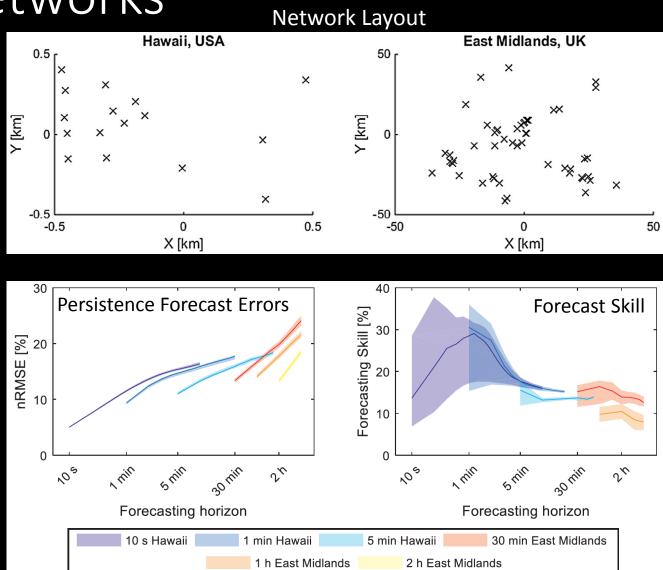
As an example, Long Short Term Memory (LSTM) slightly outperforms Feed Forward Neural Network (FFNN) and Gradient Boosting Regression (GBR).

Country	Forecast Skill:RMSE				RMSE			
Location	FFNN	GBR	LSTM	FFNN	GBR	LSTM	Pers	
Germany								
Hohenpeissenberg	54.1	54.5	55.3	30.03	29.79	29.26	65.48	
Netherlands								
Cabauw	48.2	48.3	53.1	28.06	28.05	25.42	54.20	
De Bilt	53.1	55.3	55.4	24.96	23.81	23.76	53.22	
Austria								
Grossenzersdorf	56.1	49.9	55.8	26.84	30.67	27.04	61.19	
Sonnblick	42.0	44.2	40.8	36.27	34.89	36.98	62.50	
Wien	49.9	45.9	55.6	31.59	34.07	27.94	62.99	
France								
Carpentras	57.4	59.2	62.1	26.87	25.70	23.90	63.05	
Palaiseau	48.5	53.5	44.8	29.30	26.46	31.38	56.89	
\mathbf{Spain}								
Santander	53.7	53.0	55.4	31.43	31.93	30.34	67.95	
La Coruna	44.0	47.6	48.0	33.34	31.21	30.92	59.50	
Alicante	46.6	46.0	46.9	27.16	27.47	26.98	50.85	
Madrid	49.5	54.6	53.1	25.43	22.83	23.60	50.31	
$\mathbf{Switzerland}$								
Basel	51.9	53.5	58.0	28.59	27.63	24.99	59.45	
Zurich	50.2	53.7	54.5	30.61	28.46	27.97	61.52	
Geneva	52.4	53.8	53.8	28.95	28.12	28.07	60.82	
Davos	52.2	52.1	51.4	32.12	32.20	32.69	67.19	
\mathbf{USA}								
Desert Rock	37.6	42.0	45.3	29.38	27.29	25.77	47.07	
Bondville	41.4	47.0	49.5	43.85	39.67	37.78	74.86	
Fort Peck	37.7	39.7	43.6	37.00	35.82	33.49	59.36	
Goodwin Creek	50.3	56.7	57.9	36.47	31.76	30.89	73.39	
Penn State	50.0	53.0	54.8	38.71	36.39	35.02	77.48	

Amaro e Silva & Brito (2018)

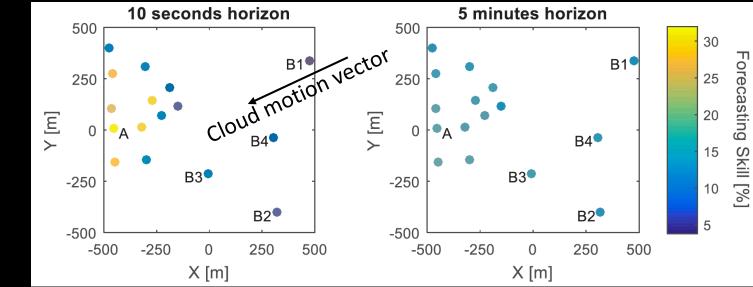
Spatio-temporal forecasting with sensor networks

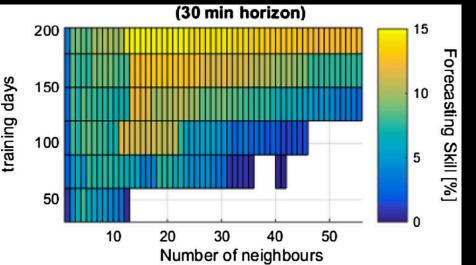
- Linear regression (ARX)
- No regime (wind direction) dependence
- Results confirm the (maybe) obvious.



Amaro e Silva & Brito (2018)

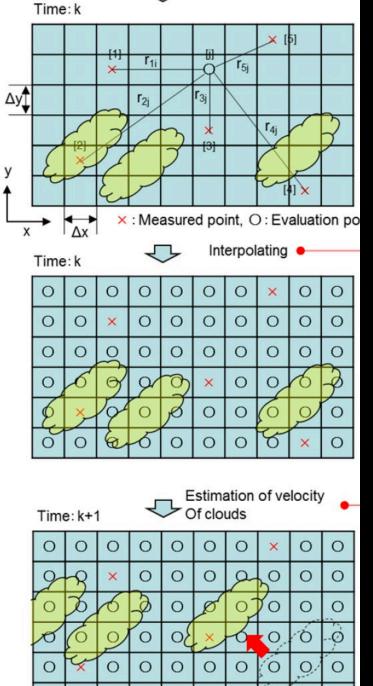
Spatio-temporal forecasting with sensor networks





• Most skill

- at downwind sensors
- at the "right" time horizons
- Importance of training days and numbers of neighbors.



O

O

0

O

O

0

0

Ó

0

Advection Equation with Cloud Thinning / Thickening applied to Ground Data

Estimation of cloud dynamics:

 $\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} + v \frac{\partial I}{\partial y} = \omega$ -2) :Advection equation where, I: irradiation, t:time, x, y: coordinates, ω : increase-decrease rate of clouds u,v: speeds of x-, and y-direction

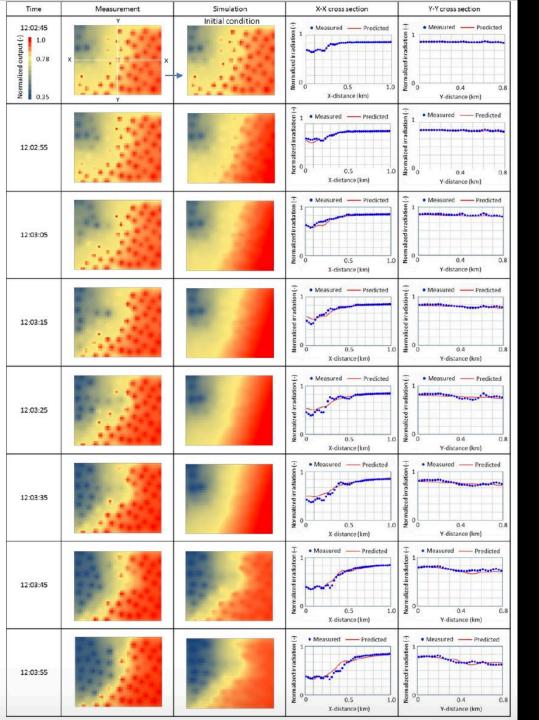
u, v, and ω were assumed as follows:

 $u = C_1 x + C_2 y + C_3$

$$v = C_4 x + C_5 y + C_6$$
 -3)

$$\omega = C_7 x + C_8 y + C_9$$

Inage, SI, Solar Energy, 2016, Development of an Advection Model for Solar Forecasting based on Ground Data First Report: Development and Verification of a Fundamental Model



Advection Equation Results

 Achieved very high forecast skill of 80%.

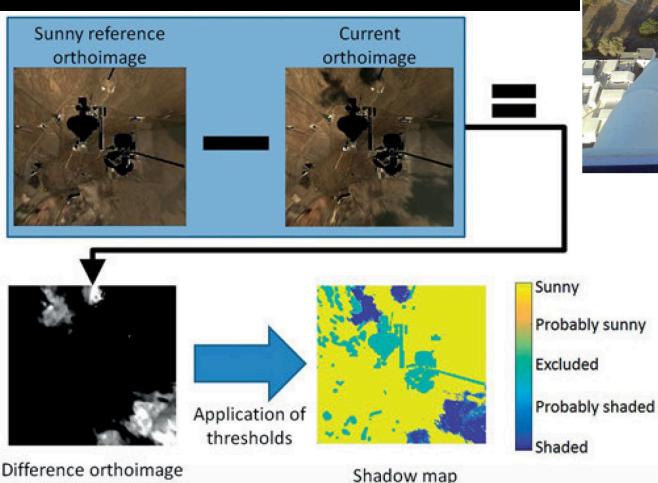
• But:

- Anecdotal validation
- Future data may have been used as boundary condition

Kuhn et al. (2019), 10.1127/metz/2019/0954

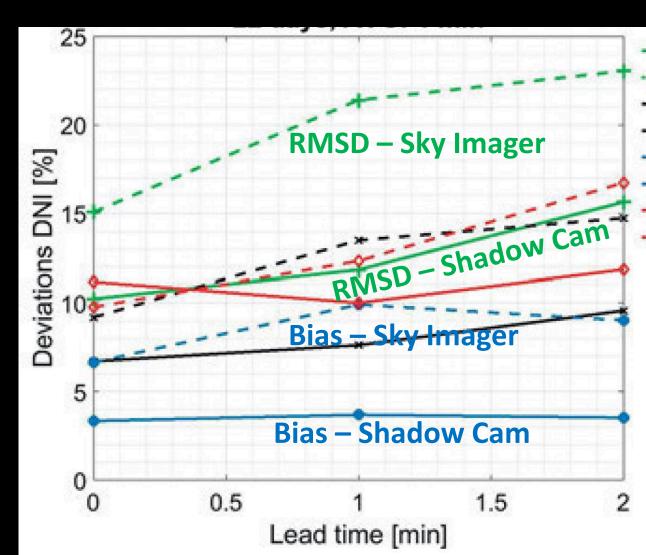
Shadow Camera Forecast System – aka the downward-looking sky imager

• 6 shadow cameras



Shadow Camera Forecast System – aka the downward-looking sky imager

- Shadow camera system outperforms sky imager
- Paper also contains innovative cloud tracking approach



Manning and Baldick, JRSE (2019)

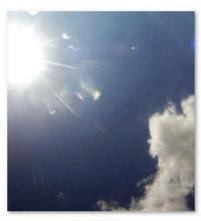
Data-Driven Approaches: Imager forecast including cloud dynamics

Dynamic Mode Decomposition

t = 60s

t = 120s

t = 180s



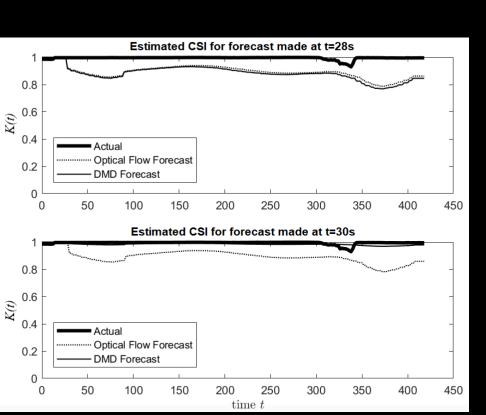
t = 240s

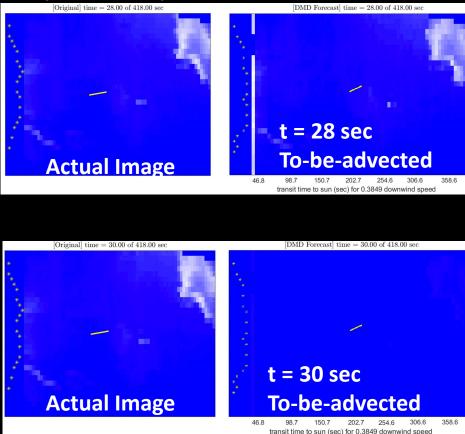
t = 360s

Manning and Baldick, JRSE (2019)

Data-Driven Approaches Applied to Imagery

- Cloud dynamics successfully represented
- Other approaches exist (e.g. Koopman operator)

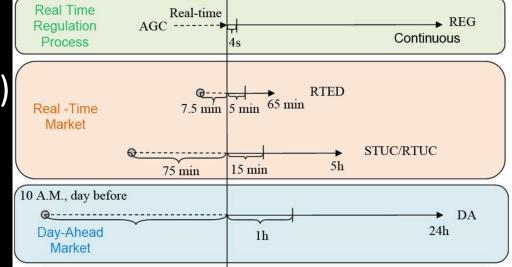




Solar Forecast Publishing Paradigm and Example ROPES

Aside: Classifying time—scales in forecasting

- The quadruplet (H,R,L,U)
 - H: forecast horizon
 - R: resolution
 - L: lead time
 - U: update rate
- Examples:



Makarov et al., 2011

- CAISO Day-ahead market: (H24h, R1h, L14h, U24h)
- CAISO Short-term unit commitment: (H5h, R15min, L75min, U1h)
- Real-time economic dispatch: (H65min, R5min, L7.5min, U5min)

A paradigm shift in (solar) forecasting - ROPES

1. **R**eproducible: Code and data please!!

2. Operational: Every detail matters. One needs to follow the grid forecast submission requirement exactly.

3. **P**robabilistic or **P**hysically-based: Simple point forecasting using ML algorithm will no longer be accepted.

4. Ensemble: Cooperative or competitive ensemble. No hybrid please!!

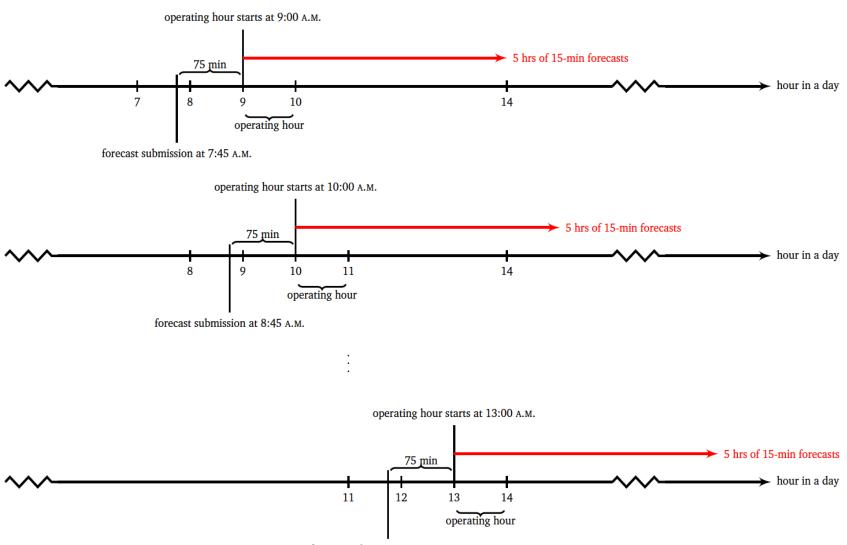
5. **S**kill: Forecasts need to be verified through skill metrics against benchmarks, e.g., forecast skill using smart persistence, or CRPS skill score.

Yang D. A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). Journal of Renewable and Sustainable Energy. 2019 Mar 23;11(2):022701.

Example: Yang, Wu, Kleissl (IJF, 2019)

- 1. Reproducible: Sure, all code is online.
- 2. Operational: CAISO Hour-Ahead.
- 3. Probabilistic or Physically-based: Both!
- 4. Ensemble: Target the "strong" ensembles, i.e., multi-modeling and analog ensemble.
- 5. Skill: Smart persistence and persistence ensemble.

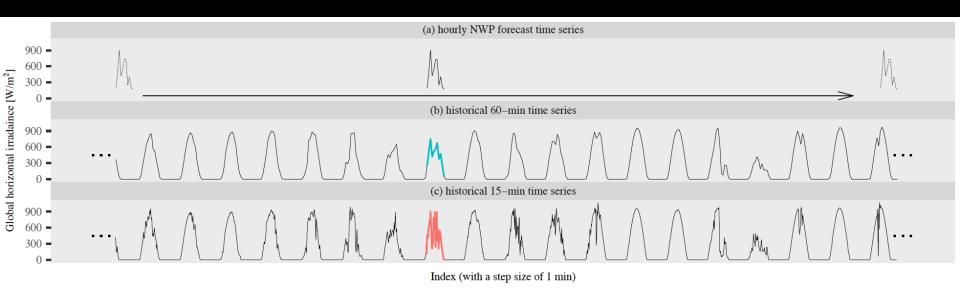
Operational Forecast



forecast submission at 11:45 A.M.

Example: Yang, Wu, Kleissl (2019)

- Given the horizon of 7 h, only satellite and NWP will work. So we use:
- North American Mesoscale (NAM) forecast system.
 - NAM forecasts contains 4 daily runs. 12:00 run out to 36 h covers the entire operating day
- Is NAM good enough? No. So let 's ensemble it and post-process it. (time series ensemble + model output statistics)
- The native day-ahead forecasts has a 1-h resolution, we need to downscale it!
 - Distance profile the fastest Euclidean-distance-based pattern matching tool.
 - Ensemble the top-n matches to form a prediction interval (PI).



Ensembling

- Component models (N = 140)
 - MOS Bias correction
 - Seasonal exponential smoothing (ETS)
 - •
- How to ensemble?
 - Averaging, trimmed square, ordinary least square (OLS), etc.
 - OLS worked best
- Downscale:
 - Pattern matching algorithm

1. Procedure PMA (history, query)
2.
$$n \leftarrow \text{len}(history)$$

3. $m \leftarrow \text{len}(query)$
4. $\Sigma \leftarrow \text{mvss}(history)$ #Moving sum-of-squares
5. $Q_{\downarrow} \leftarrow \text{rev}(query)$ # Reverse query
6. $Q_{\downarrow}[m+1:n] \leftarrow 0$ # Pad the reversed query with 0's
7. $dots \leftarrow \text{ifft}(\text{fft}(history) * \text{fft}(Q_{\downarrow}))$ #Conv. between history and Q_{\downarrow}
8. $result \leftarrow \text{sqrt}\left(\text{sum}\left(Q_{\downarrow}^{2}\right) + \Sigma - 2 * dots[m:n]\right)$ # Eq. (8)
9. return result

Deterministic Forecast Results

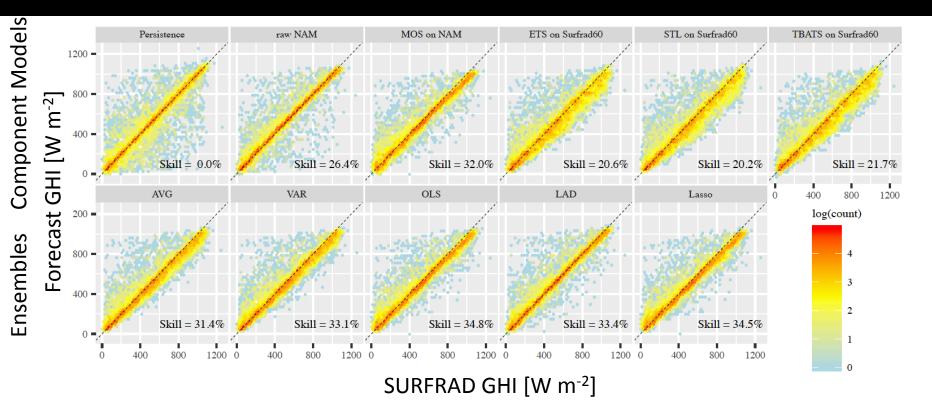
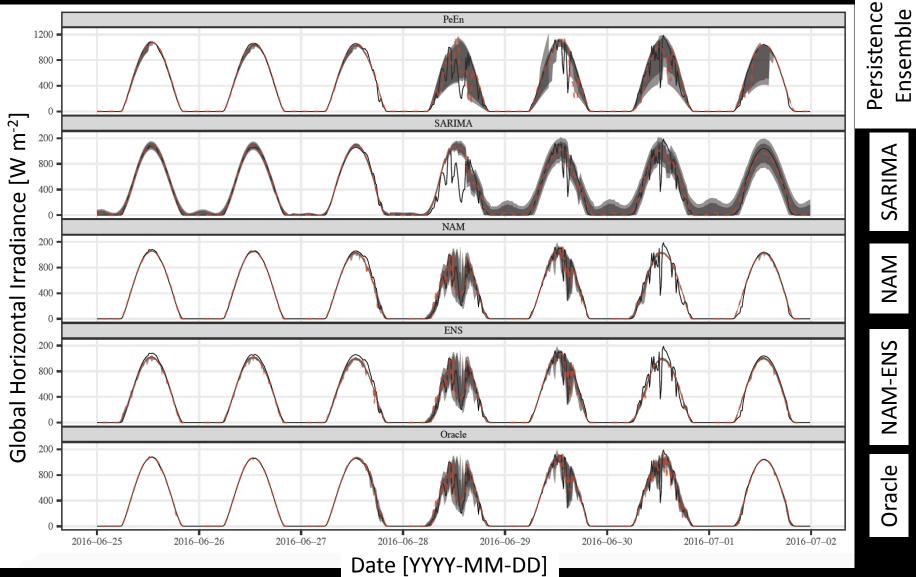


Figure: The forecast ($\mathscr{H}^{24h}, \mathscr{R}^{1h}, \mathscr{L}^{12h}, \mathscr{U}^{24h}$) versus measured GHI at Desert Rock (-116.02°, 36.62°). The component models are arranged in the top row, whereas the ensembles are in the bottom row. Hexagon binning is used for visualization. For a higher contrast, the color scheme is based on the logarithm of bin frequency.

Probabilistic Forecast Results



Conclusions and Future Directions

- Solar forecasts have great value for power grid operations
- Forecast paradigm: ROPES
- Satellite data are underexploited.
 - Coupled data driven physics models
- Lack of work on longer forecast horizons (weeks to months)