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Executive Summary 
Offshore wind energy is a rapidly growing global industry that creates electricity from wind turbines installed 
in coastal waters on either rigid or floating substructures anchored to the seabed or lake bottom. The 2018 
Offshore Wind Technologies Market Report was developed by the National Renewable Energy Laboratory 
(NREL) with support from the U.S. Department of Energy (DOE) and is intended to provide offshore wind 
policymakers, regulators, developers, researchers, engineers, financiers, supply chain participants, and other 
stakeholders with up-to-date quantitative information about the offshore wind market, technology, and cost 
trends in the United States and worldwide. This report provides detailed information on the domestic offshore 
wind industry to contextualize the U.S. market and help policymakers, researchers, and the general public 
understand technical and market barriers and opportunities. Globally, the scope of the report covers the status 
of the 176 operating offshore wind projects through December 31, 2018, and provides the status of, and 
analysis on, a broader global pipeline of 838 projects in various stages of development.1 To provide the most 
up-to-date discussion of this dynamically evolving industry, this report also tracks the most significant 
domestic developments and events from January 1, 2018, through March 31, 2019. The following is a 
summary of the key offshore wind market findings. 

U.S. Offshore Wind Energy Market−Key Findings 
The U.S. offshore wind energy project development and operational pipeline2 grew to a potential 
generating capacity of 25,824 megawatts (MW), with 21,225 MW under exclusive site control.3 The 
overall size of the U.S. offshore wind pipeline grew from 25,464 MW to 25,824 MW in 2018—about 1.4% 
growth. The 25,824 MW that make up the U.S. offshore wind project development and operating pipeline 
comprise one operating project (Block Island Wind Farm), eight projects that have reached the permitting 
phase with either a construction and operations plan or a viable offtake mechanism for sale of electricity, 15 
commercial lease areas in federal waters with exclusive site control, two unleased wind energy areas, and five 
projects (all Pacific-based) that have submitted unsolicited applications to the Bureau of Ocean Energy 
Management (BOEM),4 the government agency that regulates energy development in federal waters. The 
pipeline has three projects located in state waters, including the operating Block Island Wind Farm, the Aqua 
Ventus I floating-wind project in Maine, and the Lake Erie Energy Development Corporation Icebreaker Wind 
project on Lake Erie. In addition, there is one BOEM research lease in Virginia federal waters. 

Offshore wind project development and regulatory activities span multiple U.S. regions. Historic 
development and regulatory activities were concentrated in the North Atlantic region from Virginia northward. 
New offshore wind activities have been initiated in the Pacific, Great Lakes, and South Atlantic regions as 
well. In the past, there have been project proposals and leasing activity in the Gulf of Mexico that have been 
limited to Texas state waters, but in 2018 offshore wind development and regulatory activity in this region was 
inactive. Figure ES-1 shows a map of offshore wind pipeline activity as of March 31, 2019, as well as BOEM 
Call Areas, for the entire United States. 

 

1 Note that the 2016 Offshore Wind Technologies Market Report covered operating projects through June 30, 2017, with a focus on developments in 2016 
and the first half of 2017 (Musial et al. 2017). 
2 The project development and operational pipeline, commonly referred to as “the pipeline,” is represented by the database that the National Renewable 
Energy Laboratory uses to monitor the progress of the commercial offshore wind industry. It includes sites under development as well as operating 
projects. In the United States, the pipeline does not include Call Areas because their boundaries are not fixed. Unleased wind energy areas in the United 
States are included because they have a defined area.   
3 Federal law requires the Bureau of Ocean Energy Management to conduct a fair public auction for offshore wind sites in which there is interest from 
more than one developer (i.e., “competitive interest”). A developer cannot proceed until they have been awarded exclusive rights to the site through the 
competitive auction process. 
4 A lease area is a parcel of ocean area that is auctioned to prospective developers. Wind energy areas can comprise one or more lease areas. A Call Area is 
a precursor to a wind energy area.      
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State-level policy commitments accelerated, driving increased market interest. At the end of 2017, U.S. 
offshore state wind procurement policies totaled over 5,300 MW targeted for deployment by 2030. By early 
2019, the sum of official state offshore wind capacity commitments increased to 19,968 MW by 2035. In 2018, 
new commitments were added in Massachusetts (additional 1,600 MW authorized by 2035), New York (6,600 
MW added by 2035), and New Jersey (2,400 MW added by 2030), while Connecticut and Rhode Island both 
agreed to purchase power from Ørsted’s 600-MW Revolution project. In 2019, new policy commitments were 
enacted in Connecticut (2,000 MW) and Maryland (1,200 MW). In some states without offshore-wind-specific 
targets, like California and Hawaii, 100% renewables portfolio standards and carbon reduction policies are 
driving these markets, which are progressing toward the creation of new offshore wind lease areas. 

 

Figure ES-1. Locations of U.S. offshore wind pipeline activity and Call Areas as of March 2019. Map provided by NREL 

Increased U.S. market interest spurred strong competition at offshore wind lease auctions. BOEM 
auctioned a total of 1,573 square kilometers (km2), an area about half the size of Rhode Island, in three 
adjacent offshore wind lease areas off Massachusetts in December 2018. Each winner (Equinor, Mayflower 
Wind, and Vineyard Wind) submitted a bid of $135 million, more than tripling the previous lease area sale 
price record for a single lease area of $42 million in 2016 for the New York lease area submitted by Equinor. 
Higher offshore wind lease sale prices indicate 1) increased confidence in future market growth driven by state 
policies, 2) confidence in the regulatory and financial institutions to support offshore wind project 
development in the nascent U.S. market, 3) continued cost reductions, and 4) heightened demand for offshore 
wind in the northeastern United States. 
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Several U.S. projects advanced in the development process. U.S. offshore wind market progress was more 
evident from the advancement of major projects in the pipeline in 2018 than the capacity growth of the 
pipeline. Most notably, the commercial-scale Vineyard Wind project and Ørsted’s Revolution project 
negotiated electricity sale offtake agreements with major electric distribution companies and utilities and took 
major steps in permitting at both the state and federal level. Overall, in the United States, four projects have 
submitted construction and operations plans, nine projects have had site assessment plans approved, and six 
have signed power offtake agreements. Vineyard Wind and South Fork are the most advanced commercial-
scale U.S. projects, having both obtained a power purchase agreement (PPA) and completed state permits and 
site surveys, with a construction and operations plan under review by BOEM. Vineyard Wind reports a 
commercial operation date of 2022 for their Phase 1 facility, consisting of the first 400 MW. 

Industry forecasts suggest U.S. offshore wind capacity could grow from 11 to 16 gigawatts (GW) by 
2030. Figure ES-2 shows three industry forecasts for offshore wind deployment in the United States for the 
period extending to the year 2030. These estimates were developed by Bloomberg New Energy Finance 
(BNEF 2018a), 4C Offshore (2018), and University of Delaware’s Special Initiative on Offshore Wind (SIOW 
2019),5 respectively. Together, they illustrate the degree of possible market growth as well as the potential 
variability associated with future deployment. 

 

Figure ES-2. U.S offshore wind market forecasts for annual additions (left axis) and cumulative capacity (right axis)  
through 2030  

Offtake prices for the first commercial-scale offshore wind project in Massachusetts were lower than 
expected. On July 31, 2018, Massachusetts electric distribution companies and Vineyard Wind LLC 
negotiated a PPA for delivery of offshore-wind-generated electricity at a first-year price of $74/megawatt-hour 
(MWh) (2022$) for Phase 1 (400 MW) and $65/MWh (2023$) for Phase 2 (400 MW). An NREL study 
showed that these PPA prices may not accurately reflect the true cost of the project at face value because other 
revenue sources, such as the investment tax credit, are not accounted for (Beiter et al. [2019]; see Section 5). 
Nevertheless, this price was lower than expected given the presumed risks associated with building the first 
U.S. commercial project with an immature U.S. supply chain. Vineyard Wind’s apparent ability to access 
relatively low-cost financing and take advantage of the waning federal investment tax credit helped them set a 
competitive benchmark for the U.S. offshore wind industry. The Vineyard Wind PPA price provides a 
reference point for commercial-scale offshore wind generation in the United States that falls within the price 
range of European offshore wind projects scheduled to begin commercial operations in the early- to mid-
2020s. Additional commercial price points are anticipated in New York and New Jersey in 2019. 

 

5 Please note University of Delaware’s SIOW forecast is based on the expected date a state selects to procure offshore wind capacity. A 3-year time lag is 
assumed from the time the procurement occurs until the project becomes fully operational.  



xii | 2018 Offshore Wind Technologies Market Report 

Attention to offshore wind in California increased in 2018. California passed Senate Bill 100, The 100 Percent 
Clean Energy Act of 2018, making it the largest state to establish a 100% electric renewable energy goal, and 
setting a carbon-free target year of 2045. Amid continued negotiations with the U.S. Department of Defense, on 
October 18, 2018, BOEM published a Call for Information and Nominations and received 14 nominations from 
companies interested in commercial wind energy leases within three proposed Call Areas off central and northern 
California. All together, these three Call Areas total approximately 2,784 km2 (687,823 acres), which could 
support an offshore-wind-generating capacity for nascent floating wind technology of up to 8.4 GW. 

New national technical research consortium was launched to spur innovation. DOE has committed $20.5 
million to the New York State Energy Research and Development Authority to form a National Offshore Wind 
R&D Consortium. The New York State Energy Research and Development Authority agreed to match the 
DOE contribution and launched a funding organization to make research and development awards on 
prioritized topics that will support developers in achieving their near-term deployment and cost targets. The 
first solicitation was released on March 29, 2019, and the first awards are expected in 2019. 

Global Offshore Wind Energy Market−Key Findings 
Globally, industry installed a record 5,652 MW of offshore wind capacity in 2018. Annual capacity 
additions increased by more than 50% relative to 2017. The increase in global generating capacity can be 
attributed to increased deployment in China, with 2,652 MW of new capacity, followed by 2,120 MW 
commissioned in the United Kingdom, 835 MW in Germany, 28 MW in Denmark, and about 17 MW divided 
among the rest of the world. By the end of 2018, cumulative global offshore wind installed capacity grew to 
22,592 MW from 176 operating projects. Projections indicate 2019 global capacity additions will be even 
higher based on projects currently under construction. As of December 31, 2018, the global pipeline for 
offshore wind development capacity was about 272,000 MW. 

The pace of European auctions slowed in the second half of 2018, but forecasts show sustained industry 
growth. European auction strike prices6 in 2018 validated earlier cost reduction trends (see Section 5) but the 
number of auctions decreased, with only three occurring in the first two quarters of 2018. Adjusted strike 
prices7 for these auctions ranged from $74/MWh to $79/MWh for commercial-scale projects. The slowdown 
can be partially attributed to the depletion of viable grid connections in the German markets (Foxwell 2018a). 
However, long-term forecasts indicate that this trend may be temporary as global offshore wind capacity is 
projected to reach between 154 and 193 GW by 2030, with more than 50% coming from Europe (and another 
major fraction coming from China). 

Offshore Wind Energy Technology Trends−Key Findings 
Industry is seeking accelerated cost reductions through larger turbines with rated capacities of 10 MW 
and beyond. Through technology innovation, turbine original equipment manufacturers have been able to 
limit the rise in turbine cost ($/kilowatt) and manage the increase in mass (kilogram/kilowatt) to allow turbine 
growth to continue upward to at least 12 MW, if not 15 MW, in the next decade. There are no indications that 
turbine growth is slowing or has reached a limit for offshore wind. Although the market has experienced a 
steady upgrade of turbine drivetrain nameplate generating capacity, turbine rotor diameters have grown more 
slowly. The MHI Vestas V174-9.5 is currently the largest machine in the commercial market (Richard 2019). 
However, the next generation of turbines promises larger rotors and lower specific power ratings8 suited for 
U.S. offshore markets in the next few years. Specific examples of next-generation turbines include Siemens 
Gamesa SG 10.0–193DD turbine announced in January 2019, which is planned by Siemens Gamesa to be 

 

6 The strike price for an offshore wind project from an auction is usually the lowest bid price at which the offering can be sold. It usually covers a specific 
contract term for which that strike price will be paid for the energy produced. The offeror of that strike price is awarded the rights to develop a particular 
parcel under predetermined conditions set in the tender offer that may vary by country or market. It should not be confused with levelized cost of energy, 
which may be calculated using different financing and cost assumptions. 
7 The strike prices were adjusted to enable comparisons among projects in different countries to consider a range of possible subsidies and benefits that are 
available to some projects, such as the cost of the electrical grid connections. 
8 Specific power is the ratio of the nameplate rating of the turbine divided by the rotor’s swept area and is given in Watts per meter squared. 
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market ready by 2022, and the GE Haliade-X 12-MW turbine, which should arrive on the market by 2021 
(Siemens 2019; GE 2018b). 

Adoption of 66-kV(kilovolt) array cables is increasing to lower electrical infrastructure costs. As the 
rated power capacity of offshore wind turbines continues to grow, project developers and operators are 
increasing their use of 66-kV array cable technology instead of the conventional 33-kV systems to connect 
individual turbines within an array. In 2018, three projects incorporated 66-kV array cables versus only one in 
2017. Operation at a higher voltage offers important life cycle cost-efficiency benefits, such as the possibility 
of reducing the number of offshore substations, decreasing the overall length of installed cables, and 
minimizing electric losses. During 2018, the 66-kV technology was demonstrated by Nexans in three pilot 
wind power plant projects: the Blyth Offshore Demonstrator (United Kingdom), Nissum Bredning Vind 
(Denmark), and Aberdeen Bay (United Kingdom). 

The floating wind energy project pipeline is growing, with multiple floating pilot projects advancing. 
The global pipeline for floating offshore wind energy reached 4,888 MW in 2018. The pipeline comprises 38 
announced projects, including 46 MW of operating projects. The floating offshore wind energy industry is well 
into a second-generation, multiturbine, precommercial pilot phase. There are 14 projects representing 
approximately 200 MW that are currently under construction, having achieved either financial close or 
regulatory approval. These projects are distributed over nine countries. Figure ES-3 shows a turbine in 
Equinor’s 30-MW floating array off the coast of Peterhead, Scotland—the world’s first commercial floating 
wind energy project—which is now operating into its second year. 

 

Figure ES-3. A 6-MW floating wind turbine in Equinor’s 30-MW array near Peterhead, Scotland.  
Photo from Walt Musial, NREL 
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Semisubmersible substructures dominate the market for floating support structures, but new hybrid 
platform technologies are being introduced that could compete in future projects. Semisubmersibles, 
which use buoyancy and the water plane area to achieve stability, make up 94% of floating projects on a 
capacity-weighted average because they are inherently a stable buoyant floating substructure with low draft 
that allows for in-port or nearshore assembly. Several new hybrid technologies (platforms that combine the 
characteristics of spars, tension-leg platforms and semisubmersibles) are being introduced this year that may 
rival these substructures. Stiesdal Offshore Technologies’s TetraSpar and the SBM tension leg platform are 
highlighted in Section 4 and may be deployed as early as 2019. 

Offshore Wind Energy Cost and Price Trends−Key Findings 
Offshore wind auction strike prices in 2018 validate current cost reduction trends. Prices from European 
offshore wind auctions and PPAs in 2018 help validate the previously documented trends indicating prices 
dropping from approximately $200/MWh for projects beginning operation between 2017 and 2019 to 
approximately $75/MWh for projects beginning operation between 2024 and 2025. In the United States, 
Vineyard Wind LLC signed two PPAs with Massachusetts electric distribution companies in July 2018 for a 
combined 800 MW of offshore wind capacity expected to become operational in 2022 and 2023, respectively. 
After adjusting for contract type, transmission, policy, and access to external revenue, the Vineyard Wind 
project has an all-in price of $98/MWh. The Vineyard Wind price point indicates that U.S. projects may not be 
subject to a large price premium because of nascent U.S. market structures or a limited domestic supply chain. 
Figure ES-4 indicates the adjusted Vineyard Wind PPA prices are competitive with European offshore wind 
prices. 

 

Figure ES-4. Adjusted strike prices from European offshore wind auctions 

Sources: 4C Offshore (2018, 2019) and Beiter et al. 2019 
Notes: *Grid and development costs added; **Grid costs added and contract length adjusted 
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Future Outlook 
Offshore wind market projections show accelerated growth in the next decade, with cumulative capacity 
ranging from 154 to 193 GW by 2030, and long-range predictions of over 500 GW by 2050 (BNEF 2018a; 4C 
Offshore 2018; International Renewable Energy Agency 2018). In this context, offshore wind is still at an 
early stage with respect to the maturity of the technology, supply chain, and infrastructure. The pace of 
progress and development of the global supply chain is likely to be strongly influenced in the near term by the 
growth in turbine generating capacity, rising toward 15 MW. Although larger turbines improve project costs in 
the long run, they may also delay industry maturity. It may take several years for the corresponding industrial 
facilities and infrastructure needed for fabrication, installation, and maintenance to stabilize at ever-increasing 
turbine scales. This upscaling issue is likely to persist not only in the United States but globally as well. 

In the United States, individual states may continue to push for greater commitments for offshore wind, but 
further declines in offshore wind offtake prices are far from certain in the near term. Offshore wind projects, 
such as Vineyard Wind, will be able to take advantage of the expiring investment tax credit (see Section 
5.1.1.), which will enable low prices (on par with Europe) for the first commercial solicitation in 
Massachusetts. However, as the investment tax credit expires in 2020, projects will have to make up the 
difference by raising prices or lowering costs. This may increase the urgency to implement near-term solutions 
to manage costs, such as developing U.S.-flagged Jones-Act-compliant vessels or accelerating the growth and 
maturity of the domestic manufacturing supply chain (see Section 4). 

If demand for offshore wind energy continues to increase in states along the U.S. Atlantic and Pacific coasts, 
as it did in 2018, state policy commitments that are now almost 20 GW could exceed the capacity of the 
available sites. Presently, there is just over 21 GW of capacity in BOEM lease areas where developers have 
been granted exclusive site control. Additional state policy commitments may create possible site shortages in 
some regions, which could trigger the development of more lease areas.
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1 Introduction 
Offshore wind energy is a rapidly growing global industry that creates electricity from large wind turbines 
installed in coastal waters on either rigid or floating substructures anchored to the seabed or lake bottom. The 
2018 Offshore Wind Technologies Market Report was developed by the National Renewable Energy 
Laboratory (NREL) for the U.S. Department of Energy (DOE) to provide offshore wind policymakers, 
regulators, developers, researchers, engineers, financiers, and supply chain participants with up-to-date 
quantitative information about the offshore wind market, technology, and cost trends in the United States and 
worldwide. This report includes detailed information on the domestic offshore wind industry to provide 
context to help navigate technical and market barriers and opportunities. It also covers the status of the 176 
operating offshore wind projects in the global fleet through December 31, 2018, and provides the status and 
analysis on a broader global pipeline of 838 projects at varying stages of development. In addition, this report 
provides a deeper assessment of domestic developments and events through March 31, 2019, for this 
dynamically evolving industry. 

This report includes data, obtained from a wide variety of sources about offshore wind projects that are both 
operating and under development, to offer current and forward-looking perspectives. It is a companion to the 
2018 Wind Technologies Market Report and 2018 Distributed Wind Market Report funded by DOE and 
written by the Lawrence Berkeley National Laboratory (Berkeley Lab) (Wiser et al. 2019) and Pacific 
Northwest National Laboratory (Orrell et al. 2019), respectively. The reports cover the status of utility-scale 
and distributed, land-based wind energy located primarily in the United States, and provide quantitative, 
independent data for use by the wind industry and its various stakeholders. 

Global offshore wind deployment in 2018 set a new record for a single year (5,652 megawatts [MW]), and 
optimism for the future is high, with long-term industry projections of over 150 gigawatts (GW) by 2030 and 
over 500 GW by 2050 (Bloomberg New Energy Finance [BNEF] 2018b; 4C Offshore 2018; International 
Renewable Energy Agency [IRENA] 2018). However, 2018 was somewhat unusual by historical standards as 
the Chinese market saw its largest deployment ever, with over 2,600 MW of new installations. Offshore wind 
in Europe installed 2,994 MW, representing about 50% of the new installed capacity. 

The offshore wind market in the United States evolved rapidly in 2018 because of a series of positive global 
and domestic market growth indicators. After bids for a few offshore wind projects in Europe reinforced 
developers’ confidence of zero-subsidy projects in some markets, the United States also saw low-price signals 
from its first commercial project. In 2018, the U.S. market logged the first competitive bid for an 800-MW 
commercial wind power plant—Vineyard Wind—in Massachusetts, which seemed to indicate that European 
market prices can be achieved in the northeastern United States for projects commissioned as early as 2022. 
The possibility of achieving European offshore wind price levels in U.S. waters coincided with a new wave of 
state policy support for offshore wind, which originally began in 2016, but increased in late 2018 through the 
present day. Several new states made offshore wind commitments in 2018, whereas several of the already-
committed states aggressively increased their commitments (McClellan 2019). In addition, market optimism 
likely helped drive lease area auction prices to record highs, as observed in the Massachusetts wind energy 
area (WEA) lease sales in December 2018 ($135 million per lease area), which were each three times higher 
than the previous winning lease area bid in New York just 2 years earlier. These record-high prices may 
indicate a heightened demand for new WEAs as well as an increase in the financial caliber of the bidders, as 
new members of well-capitalized oil companies and utilities try to establish themselves as offshore wind 
developers in the emerging U.S. market. All told, the U.S. market developments in 2018 appear to be laying 
the groundwork for the formation of a new multibillion-dollar offshore wind industry that is likely to bear fruit 
in the next 5 to 10 years (BNEF 2018a; 4C Offshore 2018; McClellan 2019). 

The data and information in this report provide insight into the domestic and global market status, technology 
trends, and costs, and are key inputs to the annual Cost of Wind Energy Review report, which provides an 
updated summary of the cost of land-based and offshore wind energy in the United States to support DOE’s 
programmatic reporting on the cost of wind energy (Stehly et al. 2017, 2018). 
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1.1 Approach and Method 
1.1.1 NREL Offshore Wind Database 
The 2018 Offshore Wind Technologies Market Report uses NREL’s internal offshore wind database (OWDB), 
which contains information on more than 1,700 offshore wind projects located in 49 countries and totaling 
approximately 623,329 MW of announced project capacity (both active and dormant). The database includes 
both fully operational projects dating back to 1990 and anticipated future projects that may or may not have 
announced their commercial operation date (COD). The OWDB contains information on project characteristics 
(e.g., water depth, wind speed, distance to shore), economic attributes (e.g., project- and component-level costs 
and performance), and technical specifications (e.g., component sizes and masses). The database also contains 
information on installation and transport vessels, as well as ports used to support the construction and 
maintenance of offshore wind projects. 

The OWDB is built from internal research using a wide variety of data sources including peer-reviewed 
literature, press releases, industry news reports, manufacturer specification sheets, subscription-based industry 
databases, and global offshore wind project announcements. Unless stated otherwise, the data analysis in this 
report—both globally and domestically—is derived by NREL from the OWDB and reflects the best judgment 
of the authors and industry subject matter experts that were consulted. To ensure accuracy, NREL verified the 
OWDB against the following sources: 

• The 4C Offshore Wind Database 

• The Bureau of Ocean Energy Management (BOEM) 

• The WindEurope Annual Market Update 

• BNEF’s Renewable Energy Project Database 

• The University of Delaware’s Special Initiative on Offshore Wind (SIOW). 

Although the data were validated and harmonized with these other sources, minor differences in their 
definitions and methodology may cause the data in this report to vary from data reported in other published 
reports. For example, the method for counting annual capacity additions often varies among different sources, 
because of terms such as “installed” or “operational,” and “first power” or “commercial operation date” are 
defined differently. NREL considers a project to be commercially operational when all turbines are fully 
operational and transmitting power to a land-based electricity grid (see Table 1). Data may also vary in quality 
and are subject to high levels of uncertainty, especially data for future projects that are subject to change based 
on developer and regulatory requirements. Despite annual variability and potential future project-level 
uncertainty, longer-term trends reported elsewhere are consistent with long-term market trends in NREL’s 
OWDB. 

Cost and pricing data in the OWDB span a lengthy time period and are reported in different currencies. To 
analyze these data, all information in this report were normalized into 2018 U.S. dollars (USD) by: 

• Converting costs and prices to USD, using the exchange rate for the year in which the latest data were 
reported (United States Treasury Bureau of Fiscal Service 2019) 

• Inflating the values, which are in nominal USD after the exchange rate conversion, to 2018 USD using 
the U.S. Consumer Price Index (United States Department of Labor Bureau of Statistics 2019). 

1.1.2 Classification of Project Status 
The “pipeline” is an offshore wind project development and operating project tracking process, which provides 
the ability to follow the status of a project from early-stage planning through decommissioning. The primary 
tracking method is aligned with the regulatory process. All offshore wind projects must navigate through the 
regulatory process that formally begins when a regulator initiates a leasing process to offer developers the 
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opportunity to bid for site control through a competitive lease auction9 or when an unsolicited project 
application is formally submitted. In parallel with the regulatory process is the developer’s efforts to 
characterize the economic viability of the project and its capability for long-term energy production to obtain 
financing. The parallel regulatory and financing pathways have several dependencies, but information about 
the regulatory path is more easily accessed in the public domain and is therefore the primary method used to 
track projects in this report. Therefore, the “pipeline” is defined as the set of all offshore wind projects, 
beginning with those that have formally entered the regulatory leasing process to bid for site control and 
development rights through projects that have been decommissioned. If known, information on a project’s 
offtake mechanisms and financial close is specifically reported as well.10 

Offshore wind projects remain in the pipeline from early-stage planning through the operating and 
decommissioning phases. In the early stages of a project, the exact project footprints and capacities are not 
always known, but NREL assumes that all lease areas will eventually be fully developed with an array density 
of 3 MW/square kilometer (km2). This is a common metric for computing the available wind resource over an 
area but is not meant to be restrictive (Musial et al. 2013, 2016). Some developers may want higher array 
densities for their lease areas, or conversely, could decide or be required to leave areas undeveloped for various 
reasons. The pipeline is adjusted when these decisions are publicly announced. 

Table 1 describes the system used in this report for classifying and tracking the development of offshore wind 
projects and that has been used in past DOE-sponsored offshore wind market reports (Smith, Stehly, and 
Musial 2015; Musial et al. 2017; Beiter et al. 2018). Note that the criteria used in Table 1 also apply to the 
global project classification, but some differences may not allow for direct comparisons, especially during the 
earlier stages of planning. This disconnect is mainly because some countries have different methods of 
establishing “site control.” 

 

9 Applies to U.S. projects on the Outer Continental Shelf but varies internationally and in state waters. 
10 The “pipeline” is often measured by the quantity of policy commitments made by states. These figures are tracked separately in Section 2.4.2 and offer a 
good metric for comparison. 
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Table 1. Offshore Wind Project Pipeline Classification Criteria 

Step Phase Name Start Criteria End Criteria 

1 Planning Starts when a developer or regulatory agency 
initiates the formal site control process 

Ends when a developer obtains control of a site (e.g., 
through competitive auction or a determination of no 
competitive interest in an unsolicited lease area [United 
States only]) 

2 Site Control Begins when a developer obtains site control (e.g., 
a lease or other contract) 

Ends when the developer files major permit applications 
(e.g., a construction and operations plan for projects in the 
United States) or obtains an offtake agreement 

3 
Permitting = 

Site Control + 
Offtake Pathway 

Starts when the developer files major permit 
applications (e.g., construction and operations plan 
or obtains an offtake agreement for electricity 
production) 

Ends when regulatory entities authorize the project to 
proceed with construction and certify its offtake agreement 

4 Approved Starts when a project receives regulatory approval 
for construction activities and its offtake agreement 

Ends when sponsor announces a “financial investment 
decision” and has signed contracts for construction work 
packages 

5 Financial Close 
Begins when sponsor announces a financial 
investment decision and has signed contracts for 
major construction work packages 

Ends when project begins major construction work 

6 Under Construction Starts when offshore construction is initiated11 
Ends when all turbines have been installed and the project 
is connected to and generating power for a land-based 
electrical grid 

7 Operating 
Commences when all turbines are installed and 
transmitting power to the grid; COD marks the 
official transition from construction to operation 

Ends when the project has begun a formal process to 
decommission and stops feeding power to the grid 

8 Decommissioned 
Starts when the project has begun the formal 
process to decommission and stops transmitting 
power to the grid 

Ends when the site has been fully restored and lease 
payments are no longer being made 

9 On Hold/Cancelled 
Starts if a sponsor stops development activities, 
discontinues lease payments, or abandons a 
prospective site 

Ends when a sponsor restarts project development activity 

1.2 Report Structure 
The remainder of the report is divided into four sections: 

• Section 2 summarizes the status of the offshore wind industry in the United States, providing in-depth 
coverage on the project development pipeline, regulatory activity, offtake mechanisms, infrastructure 
trends, and regional developments. 

• Section 3 provides an overview of the global offshore wind market. Operational and proposed future 
projects are tracked by country, status, commercial operation date, and capacity. Developments on 
international floating offshore wind projects are also covered in detail. 

• Section 4 describes offshore wind siting and technology trends focusing on turbine technologies, turbine 
manufacturers, project performance, fixed-bottom substructures, electrical power, export systems, and 
floating technologies. 

• Section 5 provides insight into global and domestic offshore wind prices, capital and operational costs, 
and financing trends for both fixed-bottom and floating technologies. This section also compares 
historical and forecasted future prices between the European and U.S. offshore wind markets. 

 

11 Note that some developers may elect to start construction at an onshore landing area to secure certain subsidies or tax incentives. 
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2 U.S. Offshore Wind Market Assessment 
2.1 U.S. Offshore Wind Industry Overview 
In 2018, the U.S. offshore wind market continued to attract significant attention from the global community, 
primarily brought on by a large increase in state policy commitments. From the end of 2017 until June 10, 
2019, the total offshore wind capacity that was committed by the states nearly quadrupled. At the end of 2017, 
U.S. state offshore wind procurement policies required over 5,300 MW of offshore wind by 2030. By June 
2019, the sum of official state offshore wind targets increased to 11,468 MW by 2030 and 19,968 MW by 
2035. Even in states without offshore wind procurement targets like California and Hawaii, 100% renewables 
portfolio standards (RPS), clean energy, or carbon reduction goals are driving new market activity and the 
potential development of new offshore wind lease areas. 

The U.S. offshore wind project pipeline was 25,824 MW at the end of 2018, remaining relatively constant, 
with only a 1.4% increase in total pipeline capacity relative to 2017. Multiple projects made significant 
progress with electricity offtake agreements and environmental permitting at both the state and federal level. 
Currently, nine projects have an offtake agreement or are negotiating offtake terms. State-level procurement 
goals have increased the attractiveness of the U.S. offshore wind market and encouraged competition between 
developers at recent BOEM auctions. BOEM’s auction of three offshore wind lease areas off Massachusetts in 
December 2018 established a new lease sale price record of $135 million each, more than tripling the previous 
record of $42 million, signaling increased market confidence, higher demand, and the existence of a committed 
pool of well-capitalized bidders (BOEM 2019a, 2019b). Interest in the Pacific offshore wind markets also 
continued to grow in 2018 (BOEM 2019c). BOEM issued Calls for Information and Nominations for offshore 
wind development in California prompted by multiple prospective floating wind developers. In addition, a 20-
year power purchase agreement (PPA) signed with Vineyard Wind in 2018 revealed a first-year price of 
$74/megawatt-hour (MWh) (2022$) and $65/MWh (2023$), respectively (Beiter et al. 2019). 

Despite an increasing number of offshore wind projects submitting their construction and operations plans and 
engaging local suppliers, supply chain investment in the United States was not commensurate with regulatory 
advancement. There has yet to be a U.S.-flagged installation vessel or any domestic manufacturing centers 
built. Also, states have not yet engaged significantly in land-based grid planning or transmission infrastructure 
upgrades necessary to integrate the expected levels of offshore wind power (Lefevre-Marton et al. 2019). 
Nevertheless, two U.S.-flagged crew transfer vessels are being built, multiple ports received significant 
investments to upgrade infrastructure, and states have developed portals to connect developers with local 
suppliers. Moreover, the near-term lag in the development of a robust domestic supply chain may not be a 
barrier to the first few commercial-scale projects because the European supply chains can serve the U.S. 
market in the near term. At the same time, delays in the development of the domestic supply chain could force 
U.S. project costs above European market costs for large-scale commercial deployment in the mid-2020s and 
beyond. New technical programs sponsored by DOE and others aim to spur innovation and increase industry 
supply chain activity (New York State Energy Research and Development Authority [NYSERDA] 2019). 

2.2 U.S. Offshore Wind Market Potential and Project Pipeline Assessment 
2.2.1 U.S. Offshore Wind Pipeline 
As of December 31, 2018, NREL estimates the U.S. offshore wind pipeline to be 25,824 MW of capacity, 
which is based on the sum of current installed projects, existing lease areas, unleased WEAs, and unsolicited 
project applications. Table 2 shows the U.S. market broken into five segments by capacity. The U.S. pipeline 
capacity has one operational project (30 MW), 15 lease areas where developers have site control (estimated 
19,151 MW), two unleased WEAs (estimated 2,250 MW), and five unsolicited project applications (2,350 
MW). Only installed projects (30 MW) and projects with site control that have advanced through the initial 
permitting process and are negotiating offtake agreements (2,043 MW) use actual developer-specified capacity 
values. This is roughly 8% of the total capacity, or 2,073 MW. These projects have a clear project plan and a 
site boundary that has been specified including much of the design details. 
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The rest of the pipeline capacity in the other three categories—lease areas with site control, unleased WEAs, 
and unsolicited project applications—are all estimations based on the potential of the lease area using a 
capacity density function of 3 MW/km2 (Musial et al. 2016). Therefore, these estimated values are likely to 
change over time as project parameters are defined more precisely and lease areas are converted from an 
unspecified or residual area to actual project capacity. Figure 1 shows each of those categories as a percent of 
the total U.S. pipeline. 

Table 2. U.S. Offshore Wind Pipeline Capacity for Five Categories  

 Status Description Capacity 

1 Installed The project is fully operational with all turbines generating power to 
the grid. 30 MW 

2 Projects Permitting 
with Site Control 

and Offtake 
Pathway 

The developer has site control and has initiated permitting processes 
to construct the project and sell its power. 2,043 MW 

3 
Lease Areas with 

Site Control 

Developer has acquired the rights to a lease area. Capacity is 
estimated using a turbine density of 3 MW/km2. Depending on market 
demand, developers may or may not incrementally build out projects 
to use a given lease area’s entire size/potential. 

19,151 MW 
(Estimated) 

4 Unleased Wind 
Energy Areas 

The rights to lease areas have yet to be auctioned to developers. 
Capacity is estimated using a 3 MW/km2 turbine density function. 

2,250 MW 
(Estimated) 

5 Unsolicited Project 
Applications 

Developer lacks site control but has submitted a project proposal to 
BOEM. Project application capacities estimated using a 3-MW/km2 
density and project footprint size identified in the proposal. 

2,350 MW 
(Estimated) 

 Total 25,824 MW 

 
Figure 1. Percentages of U.S offshore wind pipeline (25,824 MW) by classification category  

Installed Projects 0.1%
(30 MW)

Projects with Site 
Control & Offtake 

Pathway
7.9%

(2,043 MW)

Lease Area With Site 
Control
74.2%

(19,151 MW)

Unleased Wind Energy Areas
8.7%

(2,350 MW)

Unsolicited Project 
Applications

9.1%
(2,250 MW)
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Figure 2 shows the U.S. pipeline activity as of June 10, 2019, for all categories shown in Table 1 by state.12 
Breaking down the 2018 U.S. pipeline by project status: one project (30 MW) has been installed; nine projects 
(2,043 MW) have site control, made major permitting progress, or secured a power offtake contract or have a 
viable pathway to obtaining one; developers have the rights to possibly develop projects in 15 lease areas with 
a technical potential of 19,151 MW; two unleased WEAs have the potential to support 2,250 MW; and six 
unsolicited project applications (2,350 MW) may be developed but must comply with BOEM’s competitive 
leasing processes. Projects progressing through offtake and permitting approval processes continued to be 
primarily located in the northeast United States, where state-level procurement drives the market and project 
development. However, there is also an increased interest in developing floating projects along the Pacific 
Coast, as described in Section 2.3.2. 

 

Figure 2. U.S. project pipeline classification by state13 

There were only minor changes in NREL’s estimation of the U.S. offshore wind pipeline from 2017 to 2018 
(reporting 25,464 MW in 2017 [Beiter et al. 2018]). The cancellation of the Nautilus Offshore Wind Project in 
New Jersey accounted for a 24-MW reduction; the expansion of South Fork from 90 MW to 130 MW shifted 
40 MW from the Deepwater One North lease area; the Redwood Coast Offshore Wind Project in California 
added 150 MW; and the proposed Castle Wind Project in California increased its capacity from 765 MW to 
1,000 MW. All told, the pipeline only increased by a slight 1.4%. 

 

12 State in Figure 2 refers to the state the project intends to sell its power to. If a project has not signed an offtake agreement, the state refers to its physical 
location. 
13 The location of the project is defined by where the project’s power is intended to be sold. If the project does not have an offtake agreement, the location 
is its physical location. This clarification is needed where projects are located in a certain location but sell their power to a neighboring state market. 
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Figure 3 provides a different breakdown of the U.S. pipeline by state. From the chart, Massachusetts, New 
Jersey, and North Carolina possess the most offshore wind potential14 as of March 31, 2019. Note that the 
hashed bars on the chart indicate the pipeline capacity that was estimated on a 3 MW/km2 area basis and the 
solid (green) colored bars are specific projects. 

It is important to be cautious about interpreting these geographic lease areas that have been assigned to specific 
states, because their physical location does not indicate where the offshore wind power will ultimately be 
delivered. For example, power from Massachusetts can feasibly be delivered to New York and vice versa. In 
this sense, projects being developed in nearby WEAs may sell power and other grid services to adjacent states 
because of market demand, state-level offtake policies, or other factors. Current projects in the pipeline that 
plan to sell power to neighboring markets include: 

• Revolution Wind in the Rhode Island/Massachusetts WEA is planning to deliver power to both 
Connecticut and Rhode Island 

• South Fork in the Rhode Island/Massachusetts WEA is planning to deliver power to Long Island New 
York 

• Skipjack in the Delaware WEA is planning to deliver power to the Delmarva grid in Maryland. 

Accordingly, state policy may be a more important driver in determining what projects move forward and 
which markets they serve than the physical location of the leases. 

 
Figure 3. U.S. project pipeline by state15 

 

14 Offshore wind potential estimates are made with a significant amount of uncertainty. Uncertainty comes from future market demand, assumed density 
function, and regulatory proceedings. 
15 The location of the project is defined by where the project’s power is sold to. If the project does not have an offtake agreement, the location is the 
project’s physical location. This clarification is needed for projects located in a state’s WEA that sells their power to a neighboring state market. 
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All of the 25,824 MW that make up the U.S. offshore wind pipeline in the United States are itemized as an 
individual project or project opportunity in Table 3, and in the maps shown in Figures 4, 5, and 6, 
corresponding to the eastern Atlantic Coast (and Great Lakes16), California Coast, and Hawaii, respectively. 

 

Figure 4. Locations of U.S. Atlantic Coast offshore wind pipeline activity and Call Areas as of March 2019.  
Map provided by NREL 

Most activity is concentrated in the North Atlantic region (Figure 4), but the pipeline activities extend to the 
Pacific, Great Lakes, and South Atlantic regions. Although there is interest in offshore wind development in 
the Gulf of Mexico, proposed projects and leasing activities have remained inactive since 2014. 

 

16 Please note the Great Lakes are outside BOEM’s jurisdiction. 
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Figure 5. Locations of U.S. West Coast offshore wind pipeline activity and Call Areas as of March 2019.  
Map provided by NREL 

In addition, Table 3 includes 13 Call Areas17 that are located in three regions, but the capacity of the Call 
Areas is not calculated or counted in the total pipeline capacity because Call Areas are too preliminary and 
likely to change in size and location. In total, there are 41 sites in the United States (as shown on the maps) 
where there is significant offshore wind development activity. The 25,824 MW of pipeline activity comprises 
one operating project (Block Island Wind Farm), nine projects at the permitting phase with an offtake strategy, 
15 lease areas with exclusive site control, two unleased WEAs, and five projects (all Pacific-based) that have 
submitted unsolicited applications to BOEM (BOEM 2019c, 2019d). The pipeline has three projects located in 
state waters, including the operating Block Island Wind Farm in Rhode Island, New England Aqua Ventus I in 
Maine, and the Lake Erie Energy Development Corporation (LEEDCo) Icebreaker project located in Lake 
Erie, just north of Cleveland. Both Aqua Ventus and Icebreaker were originally funded under the DOE 
Advanced Technology Demonstration Project program, which began in 2012 (DOE 2019). As a result, they 
have advanced further in the permitting process than many other projects, having acquired most site approvals 
from their respective states and establishing reasonable pathways to finalize their PPAs. 

 

17 BOEM periodically issues calls for information and nominations (Call Areas) to obtain public and developer feedback on what ocean areas may be 
suitable for future commercial offshore wind development. 
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Figure 6. Locations of Hawaiian offshore wind pipeline activity and Call Areas as of March 2019.  
Map provided by NREL 
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Table 3. 2018 U.S. Offshore Wind Pipeline 

 

 

# Location1 Project Name2 Status COD3 
Announced 

Capacity 
(MW)4 

Lease 
Area 

Potential 
(MW)5 

Pipeline 
Capacity 

(MW)6 
Lease Area Size 

(km2)7 
Offtake 
(MW) Developer(s) 

1 ME New England Aqua Ventus I Permitting 2022 12 0 12 State Lease 9 ME-12 Aqua Ventus 
2 MA Bay State Wind Site Control - 0 2,277 2,277 OCS-A 0500 759 TBD Ørsted/Eversource 
3 MA Vineyard Wind + Residual8 Permitting 2023 800 1,225 2,025 OCS-A 0501 675 MA-800 Avangrid/CIP 
4 MA Equinor (MA) Site Control - 0 1,564 1,564 OCS-A 0520 521 TBD Equinor 
5 MA Mayflower Wind Energy Site Control - 0 1,547 1,547 OCS-A 0521 516 TBD EDPR/Shell 
6 MA Liberty Wind Site Control - 0 1,607 1,607 OCS-A 0522 536 TBD Avangrid/CIP 
7 RI Block Island Wind Farm Installed 2016 30 0 30 State Lease 10 RI-30 Ørsted/Eversource 
8 RI South Fork Permitting 2022 130 0 130 OCS-A 0486 

395 

NY-130 Ørsted/Eversource 

9 RI Revolution Permitting 2023 700 0 700 OCS-A 0486 CT-300 
RI-400 Ørsted/Eversource 

10 RI Deepwater ONE North Site Control - 0 355 355 OCS-A 0486 TBD Ørsted/Eversource 
11 RI Deepwater ONE South Site Control - 0 816 816 OCS-A 0487 272 TBD Ørsted/Eversource 
12 NY Empire Wind Site Control - 0 963 963 OCS-A 0512 321 TBD Equinor 
13 NY Fairways North BOEM Call Area - - - - N/A - - - 
14 NY Fairways South BOEM Call Area - - - - N/A - - - 
15 NY Hudson North BOEM Call Area - - - - N/A - - - 
16 NY Hudson South BOEM Call Area - - - - N/A - - - 

17 NJ Atlantic Shores Offshore 
Wind Site Control - 0 2,226 2,226 OCS-A 0499 742 TBD EDF/Shell 

18 NJ Ocean Wind Site Control - 0 1,947 1,947 OCS-A 0498 649 TBD Ørsted 

19 DE Garden State Offshore 
Energy Site Control - 0 1,050 1,050 OCS-A 0482 284 TBD Ørsted 

20 DE Skipjack Permitting 2023 120 0 120 OCS-A 0519 107 MD-120 Ørsted 
21 MD US Wind + Residual8 Permitting 2023 248 718 966 OCS-A 0490 322 MD-248 US Wind 

22 VA Coastal Virginia Offshore 
Wind 

Permitting 2022 12 0 12 OCS-A 0497 9 VA-12 Ørsted/Dominion 
Energy 

23 VA Dominion Site Control - 0 1,371 1,371 OCS-A 0483 457 TBD Dominion Energy 
24 NC Kitty Hawk Site Control - 0 1,485 1,485 OCS-A 0508 495 TBD Avangrid 
25 NC Wilmington East WEA Unleased9 - 0 1,623 1,623 N/A 209 - - 
26 NC Wilmington West WEA Unleased9 - 0 627 627 N/A 541 - - 
27 SC Grand Strand BOEM Call Area - - - - N/A - -- - 
28 SC Winyah BOEM Call Area - - - - N/A - - - 
29 SC Cape Romain BOEM Call Area - - - - N/A - - - 
30 SC Charleston BOEM Call Area - - - - N/A - - - 
31 OH Icebreaker Permitting 2022 21 0 21 State Lease 10 OH-21 LEEDCo/Fred Olsen 
32 CA Diablo Canyon BOEM Call Area - - - - - - - - 
33 CA Morro Bay BOEM Call Area - - - - - - - - 

34 CA Castle Wind Unsolicited Project 
Application - 0 1,000 1,000 N/A 334 TBD Trident 

Winds/EnBW 
35 CA Humboldt BOEM Call Area - - - - - - - - 

36 CA Redwood Energy  Unsolicited Project 
Application - 0 150 150 N/A 50 TBD EDPR/PPI 

37 HI Oahu South BOEM Call Area  - - - - - - - 

38 HI AWH Oahu South Unsolicited Project 
Application - 0 400 400 N/A 133 TBD AW Wind 

39 HI Progression Unsolicited Project 
Application - 0 400 400 N/A 133 TBD Progression Wind 

40 HI Oahu North BOEM Call Area - - - - - - - - 

41 HI AWH Oahu North Unsolicited Project 
Application - 0 400 400 N/A 133 TBD AW Wind 

Total 2,073 MW 23,751 MW 25,824 MW  

1. Location refers to physical location of the project. The offtake column identifies where the project sells its power and other attributes.    
2. Some project names may change based on successful bids to state procurement solicitations 
3. Future commence operation dates are subject successfully negotiating offtake agreement and may change 
4. Announced capacity describes the size of a project as stipulated by a developer to regulators 
5. Lease Area Potential describes the potential capacity that could be installed in a lease area using a 3MW/km2 density   
6. Pipeline capacity represents the lease area potential minus any developer announced capacity 
7. Sizes for Unsolicited Project Applications are likely to change during stakeholder and regulatory review processes and may be eliminated in the future   
8. Lease areas can often accommodate multiple projects or project phases built incrementally. The “+ Residual” refers to remaining space in the lease area that 
may be utilized in the future 
9. The two Wind Energy Areas in North Carolina have currently not been leased by BOEM 
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2.2.2 U.S. Offshore Wind Market Forecasts to 2030 
Figure 7 is a compilation of three independent industry forecasts for offshore wind deployment in the United 
States for the period extending to the year 2030. These estimates were developed by BNEF (2018b), 4C 
Offshore (2018), and University of Delaware’s SIOW (2019),18 respectively. Combined, they illustrate the 
degree of expected market growth and the possible variability associated with the year, size, and location of 
future projects. 

 

Figure 7. U.S offshore wind market forecasts (annual additions–left axis) (cumulative capacity through 2030–right axis) 

The forecasts estimate that the U.S. offshore wind market will cumulatively deploy between 4 and 13 GW by 
2025, and 11 and 16 GW by 2030. All three forecasts agree that the U.S. market has the potential to be greater 
than 10 GW by 2030, but the size and speed of build-out are likely to be impacted by regulatory uncertainty, 
availability of installation vessels and port infrastructure, land-based grid planning and upgrades, and evolving 
market demand. All forecasts predict the majority of future offshore wind deployment out to 2030 will occur 
on the East Coast in states with currently existing or planned offshore wind procurement goals. Only 4C 
Offshore’s forecast includes commercial-scale floating projects by 2030: one on the West Coast off California, 
and one off the state of Maine. 

The main factor causing variability in the forecasts is uncertainty regarding state policy as well as the size and 
regularity of future procurements beyond state-level solicitations that have already been announced. Other 
significant factors include potential problems acquiring project financing, vessel availability, cost reduction 
challenges, problems with environmental and geotechnical surveys, and unexpected issues with competing 
ocean uses. The forecasts likely assume the creation of new offshore wind lease areas to fully support state 
procurement targets, but this is not stated explicitly. For example, New York’s 9-GW-by-2035 target may 
necessitate obtaining capacity from neighboring WEAs in states like Rhode Island, Massachusetts, and New 
Jersey, and establishing new lease areas. As such, there has been much speculation over the four Call Areas in 
the New York Bight but at this time it is not known if or when BOEM will propose new WEAs (BOEM 
2019b). 

 

18 Please note University of Delaware’s Special Initiative for Offshore Wind forecast is based on the expected date a state selects to procure offshore wind 
capacity. A 3-year time lag is assumed from the time the procurement occurs until the project becomes fully operational. 
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2.3 Regulatory Activity 
2.3.1 Lease Activity  
Acquiring exclusive rights to develop a lease area in federal waters (where most lease areas are 
located) is the first fundamental step toward building an offshore wind project in the United States. 

Market consolidation was a major trend in 2018, driven by international developers purchasing the 
assets of smaller U.S. companies. Although construction for commercial projects has not yet begun in 
earnest, approximately $1.39 billion was exchanged in the United States this year in gross revenue 
involving lease areas and corporate acquisitions: 

• In April 2018, Ørsted asked BOEM to reassign 107 km2 in the southern portion of lease area OCS-A 
0482 (Garden State Ocean Energy) in Delaware to the Skipjack project. Skipjack now has its own lease 
area: OCS-A 0519. 

• In December 2018, Atlantic Shores Offshore Wind, a partnership between Électricité de France 
Renouvelables (EDF) and Shell New Energies, bought lease area OCS-A 0499 from US Wind for $215 
million pending regulatory approval (offshoreWIND.biz 2018a). 

• In November 2018, Ørsted completed the acquisition of Deepwater Wind’s offshore assets including 
their lease areas for a reported $510 million (Ørsted 2018). 

• In February 2019, Ørsted sold a partial ownership stake for $225 million in some of their newly acquired 
Deepwater projects to Eversource Energy, a utility serving Connecticut, Rhode Island, and 
Massachusetts (Eversource Energy 2019). 

Another major market trend in 2018 was an increase in offshore lease area prices, as demonstrated in BOEM’s 
sale of three offshore wind lease areas in the Massachusetts WEA. Each lease area sold for at least $135 
million. The lease areas had previously been up for auction in January 2015 but did not receive any bids. The 
results of this auction are shown in Table 4. 

Table 4. BOEM’s Massachusetts Offshore Wind Auction Results from December 2018 

State Lease Area Auction 
Date 

Provisional 
Winner 

Winning Bid 
Size 
(km2) 

Lease Area Potential 

MA OCS-A 0520 12/14/18 Equinor $135,000,000 521 1,564 MW 

MA OCS-A 0521 12/14/18 Mayflower Wind 
Energy $135,000,000 516 1,547 MW 

MA OCS-A 0522 12/14/18 Vineyard Wind $135,100,000 536 1,607 MW 

In aggregate, the three lease areas in Massachusetts have the potential to support at least 4.7 GW of new 
capacity. Figure 8 shows the overall trend of increasing lease sale prices in the United States since 2013, on the 
basis of $/km2. 
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Figure 8. U.S. offshore wind lease sale prices to date by year 

Notably, the winning auction bid price of $135 million surpassed the previous record-winning sale price of 
$42.4 million in Equinor’s 2016 acquisition of the New York lease area. Not surprisingly, the highest-priced 
leases were in states with both proposed and implemented offshore wind offtake policies (e.g., Massachusetts, 
New York, Maryland, and Massachusetts) in 2018. 

Although increased lease sale prices may be a signal that the offshore wind market is maturing and the 
bankability of future projects is increasing, it may also offset some expected (or required19) project price 
reductions and could increase the delivery price of a project’s electricity. As an example, NREL calculated that 
recent Massachusetts lease sale prices could increase the levelized cost of energy (LCOE) for a hypothetical 
800-MW project by about 5% relative to U.S. projects that acquired lease areas prior to 2016. 

2.3.2 New Area Identification 

BOEM periodically publishes Calls for Information and Nominations to assess commercial competitive 
interest for offshore wind development on specific parcels of ocean acreage in federal waters. The information 
gathered during these calls is used by BOEM in conjunction with other stakeholder input to identify future 
WEAs and subsequent lease area auctions. A Call Area is a precursor to a defined wind energy area, but not all 
Call Areas become wind energy areas, and they are typically modified (reduced in size) to address stakeholder 
input. In 2015, BOEM issued calls for four areas in federal waters off South Carolina and in 2016 issued calls 
for two areas off the Hawaiian island of Oahu (BOEM 2019d). There are currently 13 Call Areas for offshore 
wind today in the United States. Table 5 lists the seven newest Call Areas created by BOEM in 2018, 
including four in New York and three in California. These can also be found on the maps in Figures 4 and 5, 
and in Table 3 (BOEM 2019b, 2019c). 

 

19 Some states, such as Massachusetts, have procurement policies that mandate that project prices in future solicitations must be lower than previous project 
prices to require a downward cost trend. 
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Table 5. 2018 BOEM Offshore Wind Call Areas 

State Name Call Period 

NY Fairways North Call Area 4/11/2018–7/30/2018 

NY Fairways South Call Area 4/11/2018–7/30/2018 

NY/NJ Hudson North Call Area 4/11/2018–7/30/2018 

NY/NJ Hudson South Call Area 4/11/2018–7/30/2018 

CA Humboldt Call Area 10/19/2018–1/28/2019 

CA Morro Bay Call Area 10/19/2018–1/28/2019 

CA Diablo Canyon Call Area 10/19/2018–1/28/2019 

2.3.3 Stakeholder Engagement 
The offshore wind industry in the United States continues to look for strategies to responsibly develop projects 
that minimize interference with the environment as well as the following preexisting ocean uses: 

• Fishing. In cooperation with the Rhode Island Coastal Resources Management Council and local 
fishermen, Avangrid-Copenhagen Infrastructure Partners (CIP) established a $12.5-million trust fund to 
compensate fishermen who may be negatively impacted20 by Vineyard Wind’s construction (Rhode 
Island Coastal Resources Management Council 2019). The Responsible Offshore Science Alliance has 
partnered with fishermen, the National Oceanic and Atmospheric Administration (NOAA), Equinor, 
EDF, Shell, and Ørsted to disseminate salient and credible fisheries data (Froese 2019a). Ørsted 
partnered with the Responsible Offshore Development Alliance to improve communication between 
fishermen and their project planners (Saltzberg and Dowd 2019). Equinor and EDF also joined the 
alliance’s Joint-Industry Task Force to ensure fishing and offshore wind development can coexist 
(Froese 2019b). The Responsible Offshore Development Alliance has also partnered with BOEM, 
NOAA, the U.S. Coast Guard, and other fishing industry liaisons to ensure that stakeholder concerns and 
best mitigation practices are incorporated into regulatory review processes. The group conducted 
multiple workshops in 2019 to minimize potential impacts of offshore wind development on fishermen. 

• Environmental. Offshore wind construction and operations could potentially impact marine mammals,21 
fisheries, or avian species. Of specific interest in the northeast is the North Atlantic right whale, one of 
the world’s most endangered marine mammals with historical migration routes that transit multiple 
offshore WEAs. In April 2018, Bay State Wind announced it would provide $2 million in research grants 
to help protect New England marine mammals (Bay State Wind 2018). In 2019, Equinor partnered with 
the Conservation Society and Woods Hole Oceanographic Institute to deploy acoustic buoys to better 
understand whale activities near proposed construction areas (Lillian 2019). Vineyard Wind signed an 
agreement with the National Wildlife Federation, Natural Resources Defense Council, and Conservation 
Law Fund to develop a construction strategy that minimizes pile driving and geophysical surveys during 
North Atlantic right whale migration periods, sets vessel speed limits to minimize marine mammal 
collision, and adopts new technologies like bubble screens to minimize installation noise (Skopljak 
2019a). Vineyard Wind is also accepting proposals from universities and private companies for new 
passive acoustic monitoring systems to detect when whales are in the vicinity and appropriately pause 
construction activities to mitigate negative impacts (Skopljak 2019b). LEEDCo continues to work 
through federal and state regulations to minimize the impact of offshore wind energy on bird and bat 
species. As a resource for the public, DOE’s Tethys database22 provides users with access to scientific 
studies that can help developers, regulatory staff, stakeholders, and researchers effectively site renewable 

 

20 Offshore wind construction may impact the availability of certain fish species or interfere with the ability of fishermen to fish in certain locations. 
21 Underwater noise associated with offshore wind construction (especially pile driving) may impact marine mammal communication and migration. 
22 Please visit DOE’s Tethys database at https://tethys.pnnl.gov/. 

https://tethys.pnnl.gov/
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projects and employ installation and operations techniques that minimize impact to the environment 
(DOE 2018). Additional public resources relevant to offshore wind include BOEM’s Environmental 
Science Database (BOEM 2019e), the Northeast Regional Ocean Council Data Portal (NOAA 2019a), 
and the Mid-Atlantic Ocean Data Portal (NOAA 2019b). 

• Navigation. To avoid collisions and entanglement of fishing gear, Vineyard Wind proposed maritime 
transit corridors through their lease area with the support of BOEM, local stakeholders, and the U.S. 
Coast Guard (Vineyard Wind 2018d). 

• Military. As reported in the 2017 Offshore Wind Technologies Market Update, offshore wind 
developers, state agencies, the U.S. Department of Defense, and BOEM have been working together to 
resolve potential offshore wind conflicts with military operations, training, and radar. Areas with military 
activities and potential offshore wind development include California, Hawaii, New York, Delaware, 
Maryland, North Carolina, and South Carolina. These discussions are continued in 2018 and are likely to 
remain active in the foreseeable future. 

2.4 U.S. Offshore Wind Project Offtake and Policy Assessment 
2.4.1 Project Offtake Agreements 
In addition to obtaining site control and regulatory approval, negotiating an offtake agreement to sell the 
electricity and other possible clean power attributes (e.g., offshore renewable energy credits [ORECs]) is one 
of the three crucial steps to developing a bankable project. In the United States, each state has unique 
procurement targets and uses different mechanisms to negotiate the duration and terms of buying an individual 
project’s electrical generation from a developer.23 Eight offtake agreements have been signed for seven U.S. 
projects and two projects are in the process of negotiating terms with electric distribution companies, as shown 
in Table 6. (Note that Revolution is one project but is selling power to two different states.) 

 

23 As shown in Table 6, some of the most common offtake agreement types are PPAs; legal contracts where a developer sells a project’s power and other 
attributes to a buyer for a specified price and term; offshore renewable energy credits, in which each credit represents 1 MWh of energy and other attributes 
generated from an offshore wind energy project; and utility owned, wherein an offshore wind project is fully owned by a utility and sells power directly to 
utility customers.  
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Table 6. U.S. Offshore Wind Offtake Agreements as of June 10, 2019 

Project Offtake 
State 

Offtake 
Mechanism 

Public Utility 
Commission 

Approved 

Offtake 
Mechanism 

Price 
Description 

Block Island 
Wind Farm RI PPA Yes $244/MWh In 2014, Deepwater Wind signed a 20-year PPA with 

National Grid for $244/MWh, with a 2.5% annual escalator. 

South Fork NY PPA Yes Undisclosed 

In 2017, Deepwater Wind signed a 20-year PPA with Long 
Island Power Authority for 90 MW at an undisclosed price. In 
2019, Long Island Power Authority executed an amendment 
in the PPA to increase the offtake agreement to 130 MW. 

US Wind MD MD ORECs Yes $131.92/MWh 
In 2017, Maryland awarded US Wind ORECs24 for 248 MW 
of capacity for 20 years. Each year, 913,945 ORECs will be 
sold. The levelized OREC price is $131.94/MWh. 

Skipjack25 MD MD ORECs Yes $131.92/MWh 
In 2017, Maryland awarded Skipjack ORECs for 120 MW of 
capacity for 20 years. Each year, 455,482 ORECs will be 
sold. The levelized OREC price is $131.94/MWh. 

Vineyard 
Wind MA PPA Yes 

$74/MWh 
$65/MWh 

In 2018, Vineyard Wind signed two 400-MW PPAs with 
Massachusetts utilities for 20 years. The levelized first-year 
prices of the PPAs were $74/MWh (2022$) and $65/MWh 
(2023$), respectively. 

Coastal 
Virginia 
Offshore 

Wind 

VA Utility 
Owned Yes $780/MWh26 

In 2018, Virginia regulators approved Dominion/Ørsted to 
construct a 12-MW demo project. The estimated levelized 
cost of energy is $780/MWh. 

Revolution 
Wind CT PPA Yes $94/MWh 

In 2018, Ørsted signed a 20-year PPA with Eversource and 
United Illuminating for 200 MW, with a levelized PPA price of 
approximately $94/MWh. Ørsted has been approved to start 
negotiations on an additional 100 MW.  

Revolution 
Wind RI PPA Yes $98.43/MWh 

In 2019, Ørsted signed a 20-year PPA with National Grid for 
400 MW. The proposal was approved by the Public Utility 
Commission, and the all-in price is $98.43/MWh. 

Icebreaker OH PPA Pending TBD LEEDCo is working to secure offtake with multiple partners 
for the project's electricity. 

Aqua Ventus ME PPA Pending TBD Aqua Ventus I is negotiating a PPA with Central Maine Power. 

2.4.2 State Policies 
The U.S. offshore wind market continues to be driven by an increasing amount of state-level offshore wind 
procurement activities and statutory policies. In aggregate, these activities now call for the deployment of 
19,968 MW of offshore wind capacity by 2035, almost four times the aggregate state-level targets identified at 
the end of 2017. These commitments are shown in Table 7. 

Note that the states that have adopted offshore wind energy policies listed in Table 7 may not have their own 
offshore wind resources. For several projects (e.g., Revolution, Skipjack, South Fork), deployment is being 
planned in a WEA adjacent to the state27 that will receive the power, generally at a location where the most 
favorable PPAs can be negotiated. The primary requirement is that the project is close enough to the onshore 
injection point to avoid prohibitive costs for the export cables. 

 

24 Each OREC represents 1 MWh of offshore wind generation and is a remuneration mechanism for the environmental attributes of offshore wind generation. 
25 Note that Skipjack is both a lease area and a project. 
26 Please note the levelized price for Coastal Virginia Offshore Wind is significantly higher than other projects because it is a demonstration project and is 
unable to leverage economies of scale. 
27 For example, the Phase 1 New York offshore wind solicitation allows generators to interconnect with other markets (PJM Interconnection or ISO New 
England), as long as the power can be sold into the New York control area. 
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Table 7. Current U.S. Offshore Wind State Policies and Activity as of June 10, 2019 

State 
2018 Capacity 
Commitment28 

(MW) 

Offshore 
Wind 

Solicited 
(MW) 

Contract 
Type 

Target 
Year Statutory Authority Year 

Enacted 
RPS 

Goal29 

State 
RPS 
Year 

MA 
1,600 1600 PPA 2027 An Act to Promote Energy 

Diversity (H.4568) 2016 

35% 2030 

1,60030 - PPA 2035 An Act to Advance Clean 
Energy (H.4857) 2018 

RI31 400 400 PPA - - - 31% 2030 

NJ 3,500 1,100 OREC 2030 
Executive Order 8 

AB No. 3723 
2018 50% 2030 

MD 

36832 368 OREC 2030 Maryland Offshore Wind 
Energy Act 2013 

24% 2020 400 - 

OREC 

2026 

Senate Bill 51633 2019 400 - 2028 

400 - 2030 

NY 
2,400 93034 OREC 2030 

Case 18-E-0071 Order 
Establishing Offshore Wind 
Standard and Framework 
for Phase 1 Procurement 

2018 

50% 2030 

6,600 - TBD 2035 Climate Leadership and 
Community Protection Act 2019 

CT 
30035 300 PPA 2020 House Bill 7036 (Public Act 

17-144) 2017 
44% 2030 

2,000 - TBD 2030 House Bill 715636 2019 

VA - 12 Utility 
Owned 2028 Virginia Energy Plan  TBD - - 

TOTAL 19,968 MW 4,710 MW 

 

28 State commitments in this table are listed incrementally and are additive (e.g., New York has a 9,000 MW goal by 2035). 
29 RPS goals are often staged over time; for this table, only the nearest-term RPS goal is included for simplification purposes. 
30 H.4857 authorized Massachusetts Department of Energy Resources to consider an additional 1,600 MW procurement by 2035. On May 31, 2019, the 
Department of Energy Resources said it would use the authorization and hold ~800-MW solicitations in 2022 and 2024, and in 2026, if needed. 
31 Rhode Island has a strategic goal to increase the state’s clean energy to 1,000 MW by 2030. However, the state has no offshore-wind-specific statutory 
requirement or goal. 
32 The Maryland Offshore Wind Energy Act of 2013 limits an offshore wind RPS carve-out to 2.5% of total retail electric sales in state. This proportional 
goal corresponds to the OREC award on May 11, 2017, for 368 MW awarded to Skipjack Offshore Energy (120 MW) and US Wind (248 MW). (Total 
retail electric sales in Maryland were 59,303,885 MWh in 2017 [Energy Information Administration 2019]). 
33 Maryland legislature passed SB516 May 25, 2019. It mandates the procurement of 400 MW by 2026, 800 MW by 2028, and 1,200 MW by 2030. 
34 Long Island Power Authority solicited 90 MW for the South Fork project in 2017. The project size was later increased to 130 MW. NYSERDA solicited 
800 MW in 2018.  
35 Public Act 17-144 limits authority to procure offshore wind to 3% of Connecticut electric distribution companies’ total electric, which corresponds to 
approximately 200 MW. The other 100 MW come from technology-neutral auctions. 
36 CT House Bill 7156 was signed into law June 10, 2019. It requires Connecticut to procure 2,000 MW by 2030 and DOE and Environmental Protection to 
issue a solicitation by June 24, 2019. 
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In April 2018, New Jersey increased its RPS goal to 50% by 2030 and its offshore wind goal from 1,100 MW 
to 3,500 MW by 2030 (New Jersey State Legislature 2018). In August 2018, Massachusetts passed new 
legislation to increase its offshore wind procurement goal from 1,600 MW by 2027 to 3,200 MW37 by 2035 
(Commonwealth of Massachusetts 2018). In October 2018, Virginia published a state energy plan that 
proposed an offshore wind target of 2,000 MW by 2028 (BVG Associates 2018a).38 In January 2019, New 
York’s Governor Cuomo increased the state’s offshore wind goal to 9,000 MW by 2035 (New York State 
2019a), which was codified into law in the Climate Leadership and Community Protection Act in June 2019 
(New York State 2019b). Maryland also passed legislation in April 2019 to mandate the deployment of an 
additional 1,200 MW of offshore wind by 2030 (Maryland General Assembly 2019). In June 2019, 
Connecticut passed new legislation to procure 2,000 MW of offshore wind capacity by 2030 (Connecticut 
General Assembly 2019). 

To meet their committed procurement targets, multiple states issued solicitations for commercial projects in 
2018, and executed significant planning around future solicitations including the following: 

• In New York, NYSERDA issued a solicitation for approximately 800 MW of capacity worth of ORECs. 
Bids were due February 19, 2019, and NYSERDA announced that Atlantic Shores Offshore Wind 
(EDF/Shell), Empire Wind (Equinor), Liberty Wind (Avangrid/CIP), and Sunrise Wind (Ørsted and 
Eversource) all responded to the solicitation. Winners are expected to be announced in spring 2019. 

• New Jersey issued a solicitation for 1,100 MW of ORECs that was open from September 20 to 
December 28, 2018. Three developers responded to the solicitation: Board Walk Wind (Equinor), 
Atlantic Shores Offshore Wind (EDF/Shell), and Ocean Wind (Ørsted). The Board of Public Utilities 
(BPU) is expected to announce a winner by summer 2019. 

• NYSERDA plans to have another 800-MW solicitation in 2019 (NYSERDA 2019). 

• The New Jersey BPU also announced plans for two additional solicitations for 1,200 MW in 2020 and 
2022 (New Jersey BPU 2019). 

• Maryland’s new offshore wind procurement legislation requires the state to procure 400 MW by 2026, 
800 MW by 2028, and 1,200 MW by 2030 (Maryland General Assembly 2019). 

• Massachusetts Department of Public Utilities issued its second offshore wind solicitation on May 27, 
2019, to meet the state’s 1,600-MW-by-2027 goal. The request for proposals asks developers to submit 
plans for designs between 400 and 800 MW (Massachusetts Department of Energy Resources 2019a). 
Bids are due by August 9, 2019. 

• The Massachusetts Department of Energy Resources conducted an offshore wind study to investigate the 
necessity, benefits, and costs of requiring Massachusetts’s electric distribution companies39 to conduct 
additional offshore wind generation solicitations of up to 1,600 MW. The agency found that the 
additional capacity was in the best interest of the state and announced it will hold additional solicitations 
for up to 800 MW of offshore wind in 2022 and 2024, and if necessary to meet the 1,600 MW target, in 
2026 (Massachusetts Department of Energy Resources 2019b). 

 

37 Note the additional 1,600 MW is at the discretion of the Massachusetts Department of Energy Resources, so the ultimate procurement target could 
change. 
38 The state energy plan recommends 2,000 MW and is awaiting action from the governor. 
39 Electric distribution companies are regulated entities that purchase wholesale energy and sell it to retail customers. 
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2.5 U.S. Infrastructure Trends 
2.5.1 Vessels and Logistics 
A lack of specialized, U.S.-flagged offshore wind installation vessels and limitations imposed by the Jones 
Act40 continues to be a potential bottleneck for the nascent U.S. offshore wind industry. As reported in past 
market reports, multiple marine engineering companies (e.g., Gusto MSC, Zentech, AK Suda) have drafted 
designs and conducted cost studies for U.S.-flagged installation vessels, but no offshore installers publicly 
announced construction of a new vessel in 2018. The only known vessel development in 2018–2019 was 
Ørsted entering into partnership with WindServe Marine to construct two crew transfer vessels—one in North 
Carolina and the other in Rhode Island—for use at the Coastal Virginia Offshore Wind and Revolution Wind 
projects (Foxwell 2019). The lack of specialized U.S.-flagged installation and support vessels will likely prompt 
initial commercial-scale projects to use foreign-flagged installations vessels and U.S.-flagged feeder barges. 

2.5.2 Ports and Harbors 
Although no investments have been made for U.S.-flagged offshore wind installation vessels, developers and 
state bodies have started to make investments in port infrastructure to make sure there are sufficient cranes and 
laydown space required for large-scale commercial projects. There are a number of ports in the United States 
that are potentially suitable for offshore wind construction, staging, and assembly. The few ports that have 
made recent infrastructure investments to upgrade and prepare for the first wave of projects are listed in Table 
8. Going forward, this list is expected to grow. 

Table 8. Ports with Recent Investments for the U.S. Offshore Wind Industry  

State Location Description Offshore Wind 
Projects 

MA Port of New 
Bedford 

Vineyard Wind is leasing the New Bedford Commerce Terminal for 
18 months as the primary staging and deployment base for its 
800-MW project (Mass Live 2018). 

Vineyard Wind 

MA Brayton Point 

Anabaric and Commercial Development Company signed an 
agreement to invest $650 million into Brayton Point’s Commerce 
Center to create an offshore wind hub that has a 1.2-GW high-
voltage direct-current converter, 400-MW battery storage, and 
additional wind turbine component laydown space.  

Multiple in MA and RI 

CT New London 

Ørsted, the Connecticut Port Authority, and Gateway will invest 
$93 million in the State Pier at New London to expand the laydown 
space, increase its heavy-lift capacity, and add other features 
necessary for large-scale offshore wind development activities. 
Ørsted will lease rights to use the pier for 10 years. 

Revolution Wind 

MD 
Tradepoint Atlantic 
(Formerly Sparrow 

Point)  

In 2017, US Wind and Deepwater Wind agreed to invest $115 
million in new manufacturing and port infrastructure.  US Wind and Skipjack 

The development and timing of port infrastructure could become a significant bottleneck for the industry. This 
may be especially true as wind turbines and project sizes continue to grow and put a strain on the capacity of 
existing infrastructure in terms of heavy lifting, ship access, clearances, channel draft, and physical laydown 
space. According to a recent McKinsey report, approximately five staging ports will be required to meet the 
needs for the first 10 GW of offshore wind deployment on the Atlantic Coast alone (Lefevre-Marton et al. 
2019). 

 

40 The Jones Act prohibits the maritime shipment of merchandise and passengers between two points in the United States by any vessel that is not U.S.- 
flagged (domestically manufactured, owned, and operated). For offshore wind development, this means foreign-flagged turbine installation vessels are 
unable to carry turbine components from a U.S. port to a construction site in U.S. waters. 
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2.6 Other Regional Developments 
Most activity is centered on the WEAs and states that have specific offshore wind procurement activities. The 
activities highlighted here by region are notable yet were not documented earlier in this report. 

2.6.1 North Atlantic 
Other offshore wind activities for the North Atlantic region included the following: 

• In February 2019, Maine’s Governor Janet Mills signed an Executive Order to end a 2018 moratorium 
on the issuance of offshore wind permits in the state (Mills 2019). The University of Maine is now in the 
process of renegotiating the Aqua Ventus I PPA for its 12-MW floating demonstration project. If built, 
this project would likely be the first wind project using floating turbines in the United States. 

• In January 2019, New Hampshire’s Governor Christopher Sununu requested that BOEM establish an 
intergovernmental offshore renewable energy task force to coordinate renewable energy activities on the 
New Hampshire Outer Continental Shelf, including potential commercial leases for offshore wind 
(Sununu 2019). 

• The New Jersey BPU denied EDF’s application for 20 years of ORECs for its 24-MW Nautilus 
demonstration project (formerly known as Fishermen’s Energy) (New Jersey BPU 2018). This ends a long 
process, which began in 2008, to build this offshore wind demonstration project approximately 2.8 miles off 
the coast of Atlantic City, New Jersey. Ultimately, the project failed because it was unable to demonstrate net-
economic benefits, as required under law by the Offshore Wind Economic Development Act. 

2.6.2 South Atlantic 
Offshore wind activities for the South Atlantic region included the following: 

• In September 2018, BVG Associates and the Sierra Club published their Offshore Wind in Virginia: A 
Vision report. This study recommended that the state set a target to support 2 GW of offshore wind 
development by 2028 and claimed this policy could create thousands of local jobs and make the state an 
offshore wind hub (BVG Associates 2018a). In 2018, The Virginia Advantage: The Roadmap for the 
Offshore Wind Supply Chain in Virginia assessed the state’s port infrastructure and found that five ports 
could support offshore wind construction and manufacturing activities without significant upgrades 
(BVG Associates 2018b). 

• In March 2019, North Carolina Governor Roy Cooper approved an offshore wind study to assess the 
state’s ability to develop successful ports and manufacturing facilities (Durakovic 2019). 

2.6.3 Pacific 
Offshore wind activities for the Pacific region included the following: 

• In 2018, California passed SB 100 (100 Percent Clean Energy Act), committing the state to realizing 
100% of its total retail electricity sales from eligible renewable energy and zero-carbon resources by 
2045. To comply with this mandate, California will consider the large-scale development of offshore 
wind. The state’s offshore wind technical resource has been determined by NREL to be over 100 GW, 
and offshore wind deployment scenarios studied suggest that a potential build-out of several gigawatts 
may be feasible using floating technology. Floating technology is expected to be commercially available 
by the mid-2020s (Musial et al. 2016, 2017). 

• On October 18, 2018, BOEM published a Call for Information and Nominations to gauge interest from 
prospective floating wind developers in commercial wind energy leases within three proposed areas off 
central and northern California (BOEM 2019c). The Call Areas are shown in Figure 5 on the central and 
northern California coasts. All together, these three Call Areas total approximately 2,784 km2 (687,823 
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acres), which could potentially deliver a generating capacity of up to 8.4 GW. In response to the call, 
BOEM received 14 nominations from developers identifying their interest in developing certain portions 
of the Call Areas. Interested developers include Algonquin Power Fund, Wpd Offshore Alpha, Avangrid 
Renewables, Castle Wind/Energie Baden-Württemberg AG (EnBW), Cierco Corporation, EDF 
Renewables, EDP Renewables North America, E.ON Development, Equinor Wind US, Mission Floating 
Wind, Northcoast Floating Wind, Northland Power America, Redwood Coast Energy Authority, and US 
Mainstream Renewable Power.  
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3 Overview of Global Offshore Wind Development 
3.1 Global Offshore Wind Market 
Following the 2017 deployment of more than 3,500 MW, a record capacity of 5,652 MW new offshore wind 
was commissioned globally in 2018, as shown in Figure 9. The increase in global capacity can be attributed to 
a strong increase in deployment from the Chinese market, with 2,652 MW of new Chinese offshore wind 
capacity coming on line, followed by 2,120 MW commissioned in the United Kingdom, 835 MW in Germany, 
28 MW in Denmark, and about 17 MW divided between the rest of Europe and Vietnam. By the end of 2018, 
the global offshore wind installed capacity grew to 22,592 MW from 176 operating projects. Projections for 
2019 indicate greater amounts of new global capacity based on projects currently under construction. 

 
Figure 9. Global offshore wind in 2018 (annual installed capacity–left axis) (cumulative capacity–right axis) 

The global offshore wind market is still centered in Europe, with approximately 17,979 MW of installed 
cumulative capacity. Asia is the second largest regional market, with 4,639 MW, and North America is the 
third largest market, with only 30 MW of capacity installed today. The OWDB indicates that future market 
growth will shift toward the Asian and U.S. markets. 

Europe’s large regional offshore wind market is sustained in part because it has the most transparent national 
offshore wind procurement schedules, regionally based original equipment manufacturers (OEMs) and 
installers, mature logistical and manufacturing supply chains, and strong research and development networks 
to support its development. In addition, Europe has had 28 years of offshore wind experience. However, the 
Asian offshore wind market may soon surpass the European market in terms of annual capacity additions, 
driven primarily by China’s demand for renewable energy and the motivation to advance the country’s 
domestic manufacturing capabilities. This shift is noticeable in the 2018 annual capacity additions. As shown 
in Figure 10, there were three main countries contributing to offshore wind capacity in 2018—China, the 
United Kingdom, and Germany. 
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Figure 10. Installed offshore wind capacity by country in 2018 

Of the 22,592 MW of cumulative offshore wind deployment recorded by the end of 2018, Figure 11 shows 
how that capacity is distributed among all countries. The United Kingdom continues to lead the world in terms 
of total deployment, with 35.2%, followed by Germany (27.4%), China (19.5%), Denmark (6.4%), the 
Netherlands (5%), and Belgium (3.9%). 

 
Figure 11. Cumulative offshore wind installed capacity by country 
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Figure 12 shows the same data plotted in Figure 9 but provides more insight into how the cumulative capacity 
changed by country. 

 

Figure 12. Cumulative installed offshore wind capacity by country over time 

Historically, Denmark was clearly the first mover of the industry; however, being a small country, its long-
term demand is smaller, and by 2010 the United Kingdom gained more total deployment. Germany began its 
transition to offshore wind around 2010 and has been increasing its deployment rapidly. Figure 12 also shows 
the sharp acceleration of the Chinese market, especially this past year—a trend that is likely to continue. 

3.1.1 European Market Activities 
As of December 31, 2018, 2,994 MW of additional offshore wind capacity was installed in Europe, bringing 
the total cumulative capacity to 17,979 MW. In 2018, Denmark installed 28 MW, France installed 2.2 MW, 
Germany installed 835 MW, Spain installed 5 MW, Sweden installed 3.3 MW, and the United Kingdom 
installed 2,120 MW. Table 9 provides a list of all the projects that reached commercial operation in 2018 by 
country. The table provides the project capacity values in megawatts and the name of the developer. Note that 
both of the French projects are subscale floating demonstration projects.  
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Table 9. European Projects Installed and Grid Connected in 2018 

Country Project Name Capacity 
(MW) Lead Developer 

Denmark Nissum Bredning Vind 28 Nissum Bredning 
Vindmallelaug 

France EOLINK 1/10 Scale Prototype 0.2 EOLINK 

France Floatgen 2 Ideol 

Germany Arkona 385 E.ON 

Germany Borkum Riffgrund 2 450 Ørsted 

Spain Elisa/Elican Demonstration 5 Elican and ESTEYCO 

Sweden Bockstigen 3.3 Momentum Gruppen A/S 

United Kingdom Aberdeen Offshore Wind Farm 93.2 Vattenfall 

United Kingdom Blyth Offshore Demonstration 
Array 2 41.5 EDF 

United Kingdom Galloper 353 Innogy 

United Kingdom Race Bank 573.3 Ørsted 

United Kingdom Rampion 400.2 E.ON 

United Kingdom Walney Extension 659 Ørsted 

Looking beyond 2018, there has been a significant amount of additional offshore wind activity in Europe 
related to new policy, procurements, permits, and offtake agreements, indicating continued market growth. 
Some of the highlights of these activities by country include the following. 

France. Although France initially implemented policies targeting 6 GW of offshore wind by 2020, 
disagreements over the feed-in tariff prices continually delayed commercial projects that had been approved in 
two tenders in 2012 and 2014. However, in June 2018, the French government finally approved the 
construction of six of the previously approved offshore wind projects after reducing the feed-in tariff.41 Each 
project is expected to receive between 150 €/MWh and 200 €/MWh (Reuters 2018). The projects, all expected 
to come on line around 2022, are Saint-Nazaire (480 MW), Courseulles-sur-Mer (496 MW), Fécamp (498 
MW), Dieppe-Le Tréport (496 MW), and Ile d’Yeu et Noirmoutier (496 MW) (Espérandieu 2018). 

Germany. In April 2018, six projects with CODs from 2022 to 2024 were awarded grid connection in the 
second German offshore wind tender. The projects were Baltic Eagle (476 MW), Gode Wind 4 (132 MW), 
Kaskasi (325 MW), Arcadis Ost (248 MW), Wikinger Sud (350 MW), and Borkum Riffgrund West I (420 
MW). The German Renewable Source Act drives the German offshore wind market and has targeted installing 
6.5 GW by 2020 and 15 GW of offshore wind capacity by 2030. Because the German market is poised to 
achieve its offshore wind goals ahead of schedule, the German legislature initiated a grid reliability study to 
assess the feasibility of increasing the country’s offshore wind goal to 20 GW by 2030 (Foxwell 2018b). 

 

41 A feed-in tariff guarantees the amount of compensation a developer receives for every megawatt-hour of electricity that their project supplies to the grid.  
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Poland. Poland held its first offshore wind tender in November 2018, awarding two projects the rights to 
connect to the grid. Additionally, the Polish Secretary of State announced the country was targeting 8 GW of 
offshore wind deployment by 2030 (offshoreWIND.biz 2018b). 

Portugal. Portugal continues to support the development of the 25-MW floating WindFloat Atlantic project. 
The project is expected to reach financial close and initiate construction in late 2019 pending government 
approval. 

Spain. Spain deployed its first offshore wind project in the Canary Islands, the 5-MW Elisa/Elican, a novel 
gravity-base float-out system that can be fully assembled inshore, with a telescoping tower. According to 4C 
Offshore, the turbine became fully operational in March 2019. As such, this project will be counted toward the 
2019 capacity additions (Skopljak 2019c). 

United Kingdom. The United Kingdom continues to be the world leader in offshore wind, with over 7.9 GW 
of installed capacity. In November 2018, The Crown Estate announced the fourth round of offshore wind 
tenders would be held in May 2019 and subsequent tenders would occur every 2 years. Based on “market 
appetite,” the tender was increased from 6 to 7 GW, and wind development regions that were limited to 50-m 
depths were extended to 60-m depths (The Crown Estate 2018). 

3.1.2 Asian Market Activities 
By the end of 2018, 2,658 MW of new offshore wind capacity was added in Asia, increasing the region’s total 
cumulative installed capacity to 4,639 MW. In 2018, China added 2,652 MW and Vietnam added 6 MW. 
Table 10 provides a list of all of the Asian projects that reached commercial operation in 2018 by country. 

Table 10. Asian Projects Installed and Grid Connected in 2018  

Country Project Name Capacity 
(MW) Developer 

China Fuqing Xinghua Bay - Phase 1 77.4 China Three Gorges New Energy Co. 

China Guodian Zhoushan Putuo District 6 Zone 2 252 GD Power Development Co. 

China Jiang Su Ru Dong Jiangjiasha H2 300 Shanghai Electric Power 

China Jiangsu Longyuan Chiang Sand H1 300 China Longyuan Power Group 

China Jiangsu Luneng Dongtai 200 Shandong Luneng 

China Laoting Bodhi Island Demonstration 300 Jointo Energy Investment 

China Longyuan Jiangsu Dafeng (H12) 200 China Longyuan Power Group 

China Longyuan Putian Nanri Island I 200 China Longyuan Power Group 

China SPIC Binhai North H2 400 State Power Investment Corporation 

China SPIC Jiangsu Dafeng H3 302.4 State Power Investment Corporation 

China Zhuhai Guishan Hai Demonstration - Phase 1 120 China Southern Power Grid 

Vietnam Ben Tre 10 – Phase 1 6 Mekong Wind Power 

Looking beyond 2018, other significant offshore wind activities in Asia related to new policy, procurements, 
permits, and offtake agreements by country include the following. 

China. China has a national offshore wind deployment goal of 5 GW by 2020; however, the rapid increase in 
the number of proposed projects has been driven by the individual province-level goals in Jiangsu (3.5 GW), 
Fujian (2 GW), and Guangdong (2 GW) (Deign 2019). In May 2018, China’s National Energy Administration 
determined that offshore wind power prices in 2019 and beyond will be set by competitive auctions instead of 
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feed-in tariffs in an effort to increase competition and spur cost reductions in the industry (Recharge News 
2018). These cost-reduction and province-level procurement targets, in conjunction with a rapidly maturing 
supply chain, are expected to dramatically accelerate the future deployment of offshore wind in China, 
potentially making it a world leader by 2030 (see Section 3.2). 

Japan. In November 2018, the Japanese government passed a bill that created a national framework for 
offshore wind development. Under the law, the Japanese government will designate at least five offshore wind 
lease areas, hold competitive auctions, and award leases for 30-year terms. In January 2019, Tokyo Electric 
Power Company, Japan’s largest utility, signed a memorandum of understanding with Ørsted to develop the 
Chosi project near Tokyo (Ørsted 2019). Although Japan still lacks firm government targets for offshore wind, 
outside analysts such as Wood Mackenzie predict that by 2028 the country will have 4 GW of offshore wind 
(Hill 2019). 

Taiwan. Taiwan has a national goal to develop 5.5 GW of offshore wind capacity by 2025 (Jacobsen 2018). In 
April and June 2018, the government awarded the first tranche of projects (~3.5 GW) the right to connect to the 
grid. In late 2018, the Taiwanese government proposed to reduce its feed-in-tariff before some of the awardees 
could finalize their power purchase agreements. This uncertainty led some developers to question the bankability 
of their projects and temporally suspend project development. Ultimately, the government settled on smaller 
feed-in-tariff reduction that enabled all projects to stay economically viable. In early 2019, Ørsted reached 
financial close on Changhua 1 (605 MW) and Changhua 2 (205 MW), Wpd reached financial close on Yunlin 
(640 MW), and Northland Power reached financial close on Hai Long 2A (300 MW) (4C Offshore 2019a). 

South Korea. Although no projects were commissioned in South Korea in 2018, land-use constraints are 
shifting the focus for renewable energy to offshore wind power. In 2018, the government set a 12-GW 
offshore-wind-capacity-by-2030 target to help the country meet a 20% renewable energy target set earlier in 
2017. In June 2018, the government adjusted the RPS to increase the renewable energy certificate (REC) value 
for offshore wind because of economic efficiency and ability to meet policy goals (Linklaters 2019). Offshore 
wind REC values are attractive because they increase with the distance from the interconnection facilities 
(Linklaters 2019). 

3.2 Offshore Wind Market Projections 
This report contains both near-term (2024) and medium-term (2030) projections for the global offshore wind 
market. Near-term trends are based on NREL’s OWDB and medium-term trends are based on a collection of 
outside sources, but primarily BNEF and 4C Offshore. These projections can help illuminate broad market 
trends, identify different national and regional deployment trajectories, and approximate the level of 
uncertainty in future deployment estimates. 

3.2.1 Project Pipeline Through 2024 
The near-term project projection is based on data obtained for NREL’s OWDB and represents our best 
understanding of the global offshore wind market. Note that market dynamics, policies, and future 
technological innovations are always subject to change, and could impact these projections. 

Near-term projections are based on industry data reporting their status in the pipeline and the developers’ 
expected commercial operation dates. Projects that have made it past financial close have a much higher 
probability of being completed and a much lower uncertainty about when they will be completed. Figure 13 
shows that 9,511 MW of new offshore wind is underway globally, which is broken down by key countries. 
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Figure 13. Offshore wind capacity under construction by country as of 2018 

By the end of 2018, there were 12 European offshore wind projects under construction, representing 5,115 
MW of new capacity to be commissioned.42 The majority of ongoing construction in Europe is occurring in the 
United Kingdom (2,520 MW) and Germany (1,460 MW), with smaller amounts in Belgium (678.6 MW) and 
Denmark (406 MW). In Asia, 17 projects, with a combined capacity of 3,469 MW, are currently under 
construction. Of the projects under construction, 12 are located in China, three in Vietnam, one in Japan, and 
one in South Korea. The increased amount of construction in Asia, especially China, represents a new market 
segment that is expected to grow in future years. 

In 2018, just over 10 GW of projects reached financial close. In Europe, 14 projects, representing 6,052 MW 
of capacity, reached financial close in 2018. In the Asian market, 17 projects, representing 4,178 MW of 
capacity, reached financial close. In total, there are about 19 GW of projects that have reached financial close 
or are under construction as of 2018. 

Figure 14 provides a yearly estimate of new deployment based solely on the developer’s estimation of when 
they expect their project to be commissioned. Although a project developer may not always be at liberty to 
disclose detailed updates or information related to their exact deployment schedule, the developer COD data is 
a rough proxy for near-term deployment. In 2019, annual capacity additions are expected to be dominated by 
the United Kingdom and China. 

Although most deployments until 2024 are located in the United Kingdom and China, other European 
countries, such as Germany, the Netherlands, and Denmark, continue to approve new projects to meet their 
national renewable or offshore wind targets. Based on only the projects reporting COD dates in Figure 14, 
these new additions would result in approximately 44 GW of new capacity from 2019 through 2024. 

 

42 Generally, a project is assumed to be commissioned 2 years after construction begins. 
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Figure 14. Developer-announced offshore wind capacity through 2024 for projects with financial close 

Figure 15 extends Figure 12 beyond the present day using the data shown in Figure 14 as a proxy to estimate 
near-term offshore wind deployment through 2024. 

 

Figure 15. Estimated 2024 cumulative offshore wind capacity by country based on a developer-announced COD (shaded 
areas represent forecasted deployments) 
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The figure shows steady or accelerated growth for the next 5 years. Although new markets, such as Poland or 
Portugal, could help maintain the European share of total global offshore wind capacity, dramatic growth in 
Asian markets indicates that China may represent almost 50% of the cumulative global capacity in the next 5 
years. In aggregate, cumulative global offshore wind deployment is expected to reach over 63 GW by 2024. 

3.2.2 Total Global Pipeline 
Figure 16 shows the global capacity of the operating and announced development pipeline for all offshore 
wind projects by region to be 272 GW, compared to approximately 230 GW in 2017. The uptick is primarily 
attributed to more Asian projects entering the planning phase. This figure does not provide information about 
the likely timing of developments within the long-term pipeline, but provides overall announced capacity for 
all active projects recorded in the NREL OWDB.43 Generally, projects that are more advanced within the 
pipeline are more likely to reach COD and to be installed sooner than those at an earlier stage; however, 
international differences in regulatory structure can result in a wide range of development timelines. The 
global project pipeline illustrates that the majority of the world’s installed projects and projects under advanced 
development are in Europe, but the majority of the world’s potential future capacity is in Asia. Looking at 
project status, there are approximately 63 GW of approved projects in the global pipeline—roughly three times 
the amount of capacity currently installed today. If all of the approved capacity gets built, the dramatic 
expansion of the global market will require the further maturation of global supply chains, expansion of 
manufacturing capabilities, and new installation vessels. 

 
Figure 16. Total global pipeline by status 

 

43 The data in Figure 16 do not include projects that are dormant, cancelled, decommissioned, or development zones. 



33 | 2018 Offshore Wind Technologies Market Report 

3.2.3 Medium-Term Projections 
Figure 17 illustrates medium-term forecasts of global offshore deployment broken down by country from 2018 
through 2030. 

 

Figure 17. Medium-term wind capacity forecasts by country through 2030 

In the figure, two independent forecasts are shown; one by BNEF (2018a) and one by 4C Offshore (2018), 
which estimate the future growth of the global offshore wind industry. BNEF forecasts offshore wind will 
reach 154 GW by 2030, whereas 4C Offshore estimates a projected deployment level of 193 GW by 2030. 
Both forecasts are provided to illustrate the variability and uncertainty associated with longer-range 
deployment estimates. 

Like the near-term forecast to 2024, the most striking shift in offshore wind market dynamics in the 2030 
forecast scenarios is the estimated growth of the Chinese market. Both forecasts expect China will 
cumulatively deploy between 41 GW and 84 GW by 2030. Forecasts also predict European developers will 
continue to incrementally build projects at a similar rate relative to today, with Europe holding roughly 47% of 
the total installed global offshore wind capacity by 2030. China itself is expected to represent 27% of the total 
2030 installed capacity with the remaining other Asian countries (e.g., Korea, Japan, and Vietnam) accounting 
for 19%. Depending on the forecast scenario (4C Offshore or BNEF), the U.S. proportion of installed capacity 
could range from 6.5% to about 8.5% of the global total by 2030. 

3.3 Floating Offshore Wind Market Trends 
The floating offshore wind market is still driven by the prospect of accessing a much larger resource area with 
high-quality wind resources, but in water depths that are too deep (nominally greater than 60 m) for 
conventional fixed-bottom technologies. In the United States, more than 58% of the total technical offshore 
wind resource is located in water depths greater than 60 m, and in Europe that number is 80% (Musial et al. 
2016; WindEurope 2018). Globally, the development of a floating offshore wind market is emerging quickly 
as experience and knowledge are gained from pilot projects in Europe, Asia, and North America. This pilot 
phase, which should be mostly operational by 2022, is expected to inform the development of cost-effective 
commercial-scale projects that may be possible by as early as 2025. 

3.3.1 Existing Floating Projects 
There are currently eight floating offshore wind projects installed around the world representing 46 MW of 
capacity. Five projects (37 MW) are installed in Europe and three (9 MW) are in Asia. There are an additional 
14 projects representing approximately 200 MW that are currently under construction or have achieved either 
financial close or regulatory approval. Two projects (488 MW) have advanced to the permitting phase of 
development, and another 14 are in the early planning stages (4,162 MW). Overall, the 2018 global floating 
offshore wind pipeline represents approximately 4,888 MW of capacity, growing by 2,000 MW relative to the 
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2017 Offshore Wind Technologies Market Report Update. Figure 18 illustrates the current offshore wind 
market pipeline in terms of market timeline, proposed project size, water depth, and host country. The figure 
illustrates how the floating offshore wind market evolved from small-scale, single-turbine prototypes (2009–
2015) to multiturbine demonstration projects (2016–2022). Post-2022, the first large-scale floating projects are 
expected to become commercially viable. 

Each of the 38 projects shown in Figure 18 are listed in Table 11, which also includes the project status, 
capacity developer, and substructure type. 

Figure 18. Global floating offshore wind pipeline 
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Table 11. Current Floating Offshore Wind Projects in Pipeline 

Region Project Country Pipeline 
Status COD Capacity 

(MW) 

Water 
Depth 

(m) 
Developer 

Turbine 
Rating 
(MW) 

Substructure 

Asia 

Fukushima Floating 
Offshore Wind Farm 

Demo Phase 1 
Japan Installed 2013 2 120 Marubeni 

Corporation 2 Semisubmersible 

Fukushima Floating 
Offshore Wind Farm 

Demo Phase 2 
Japan Installed 2015 5 120 Marubeni 

Corporation 5 Semisubmersible 

Sakiyama 2-MW 
Floating Wind 

Turbine 
Japan Installed 2016 2 100 TODA 

Corporation 2 Spar 

Kitakyushu – New 
Energy Development 
Organization (NEDO) 

Japan 
Under 

Construction 2019 3 70 NEDO/Ideol 3 Semisubmersible 

Hitachi Zosen Japan Permitting 2024 400 - Equinor Hitachi TBD Semisubmersible 

Macquarie Japan Japan Planning 2025 500 100 Macquarie TBD TBD 

Ulsan 750-kilowatt 
Floating Demo 

South 
Korea 

Financial 
Close 2019 0.75 15 Consortium 0.75 Semisubmersible 

Donghae KNOC - 
Equinor 

South 
Korea Planning 2027 TBD TBD Equinor/KNOC TBD TBD 

Ulsan Shell, Coens, 
Hexicon 

South 
Korea Planning 2027 200 TBD Shell/Coens/ 

Hexicon TBD Semisubmersible 

Ulsan Macquarie  South 
Korea Planning 2027 200 TBD Macquarie TBD TBD 

Ulsan SK E&S - CIP South 
Korea Planning 2027 200 TBD SK E&S/CIP TBD TBD 

Ulsan KFWind – 
Principle Power – 
Wind Power Korea 

South 
Korea Planning 2027 200 TBD KFWind/PPI/WPK TBD Semisubmersible 

Floating W1N Taiwan Planning 2025 500  Eolfi/Cobra TBD TBD 

Europe 

EOLINK 1/10-scale 
prototype France Installed 2018 0.2 10 EOLINK S.A.S. 0.2 Semisubmersible 

Floatgen Project France Installed 2018 2 33 Ideol 2 Barge 

Groix Belle Ille France Approved 2021 24 62 EOLFI 6 Semisubmersible 

Provence Grand 
Large France Approved 2021 24 30 EDF 8 Tension Leg 

Platform 

Eolmed France Approved 2021 24 62 Ideol 6.2 Barge 

Les Eoliennes Flotant 
du Golfe du Lion France Approved 2021 24 71 

Engie, EDPR, 

Caisse de Depots 
6 Semisubmersible 

GICON 
Schwimmendes 

Offshore Fundament 
SOF Pilot 

Germany 
Financial 

Close 2022 2.3 37 GICON 2.3 Tension Leg 
Platform 

Hywind - Demo Norway Installed 2009 2.3 220 UNITECH 
Offshore 2.3 Spar 



36 | 2018 Offshore Wind Technologies Market Report 

Region Project Country Pipeline 
Status COD Capacity 

(MW) 

Water 
Depth 

(m) 
Developer 

Turbine 
Rating 
(MW) 

Substructure 

TetraSpar 
Demonstrator Norway 

Financial 
Close 2019 3.6 200 Innogy, Shell, 

Stiesdal 3.6 Semisubmersible 

Hywind Tampen Norway Permitting 2022 88 110 Equinor 8 Spar 

NOAKA Norway Planning 2023 TBD 130 Equinor/Aker BP TBD TBD 

WindFloat Atlantic 
(WFA) Portugal 

Financial 
Close 2019 25 50 WindPlus S.A. 8 Semisubmersible 

DemoSATH - BIMEP Spain Approved 2020 2 68 Saitec Offshore 
Technologies TBD Semisubmersible 

X1 Wind prototype 
PLOCAN Spain Approved 2021 TBD 62 X1 Wind TBD Tension Leg 

Platform 

Floating Power Plant 
PLOCAN Spain Approved 2021 TBD 62 FPP 8 MW Hybrid Wave Power 

Semisubmersible 

Hywind Scotland 
Pilot Park 

United 
Kingdom Installed 2017 30 100 Equinor 6 Spar 

Dounreay Tri United 
Kingdom Approved 2021 10 76 Hexicon 5 Semisubmersible 

Kinkardine Offshore 
Wind Farm Phase 1  

United 
Kingdom Installed 2018 2 62 Cobra 2 MW Semisubmersible  

Kinkardine Offshore 
Wind Farm Phase 2 

United 
Kingdom 

Under 
Construction 2020 50 62 Cobra 9.5 MW Semisubmersible 

North 
America 

Castle Wind United 
States Planning 2027 1,000 900 EnBW/Trident 

Winds 8+ Semisubmersible 

Redwood Coast 
Energy 

United 
States Planning 2025 150 550 EDPR/PPI 8+ Semisubmersible 

Aqua Ventus I United 
States Planning 2022 12 100 University of 

Maine 6+ Semisubmersible 

Oahu North United 
States Planning 2027 400 850 AW Wind 6+ Semisubmersible 

Oahu South United 
States Planning 2027 400 600 AW Wind 6+ Semisubmersible 

Progression Wind United 
States Planning 2027 400 650 Progression Wind 6+ Semisubmersible 
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3.3.2 Global Floating Market Assessment 
The global offshore wind market continues to mature and show signs that it will accelerate its growth in the 
future. Major developments and trends in 2018 include the following. 

• Initial pilot and demonstration projects have validated functionality of floating technologies and 
encouraged further turbine upscaling. Principle Power indicated that its 25-MW WindFloat Atlantic 
project in Portugal on its tri-hull asymmetrical semisubmersible substructures will be paired with three 
MHI Vestas V164-8.4 MW turbines, and the 50-MW Kincardine Floating Offshore Wind Park will use 
five MHI Vestas V164-9.5 MW turbines and one V80-2.0 MW turbine. Equinor also intends to deploy 
8-MW (and above) turbines at its proposed 88-MW Tampen project aimed at powering two offshore oil 
and gas rigs in Norway. Similar to fixed-bottom technologies, floating systems seek larger turbines to 
help lower project costs (see Section 4). 

• Ideol installed a 2-MW demonstration project and France approved four demonstration projects. 
Ideol’s 2-MW Floatgen (dampening pool barge44) demonstration project was successfully installed 2 km 
off Le Crosic and connected to the grid in September 2018. The European Commission has offered 
financial support and the French government has approved four 24-MW demonstration projects: Groix 
Belle Ille in the Atlantic as well as Golfe du Lion, Eolmed, and Provence Grand Large on the 
Mediterranean (European Commission 2019). 

• Interest in offshore wind on the West Coast of the United States increased in 2018. California’s 
ambitious 100% renewable energy goals could necessitate the development of floating offshore wind 
projects in water depths up to 1,000 meters (m) (see Section 2). Two unsolicited offshore wind project 
applications have been filed with BOEM including Redwood Coast Energy (150 MW) and Castle Wind 
(1,000 MW). Because competitive commercial interest has been established, BOEM initiated three Call 
Areas (two are around these projects) and is accepting public comments on how to best shape potential 
future lease areas. 

• Nascent Asian markets showed strong interest in floating wind. Japan has been interested in offshore 
wind since 2011 and installed some of the first prototypes using government funding appropriated after 
the Fukushima nuclear accident. New floating projects in Japan look increasingly promising now that the 
country has developed offshore wind deployment policies. In the near term, Japan’s New Energy and 
Technology Development Organization announced that it is constructing a 3-MW demonstration project. 
Equinor has signed a memorandum of understanding with Korea National Oil Corporation to develop a 
floating project near the Donghae gas platform that is 58 km off the coast of Ulsan City, South Korea. 
Ulsan Metropolitan City and National Government also signed four memorandums of understanding 
with developers45 to each develop 200-MW floating projects with a COD of 2023 (Quest Floating Wind 
Energy 2019).  

 

44 A dampening pool barge is a shallow-draft, buoyant foundation with a central opening that damps out platform motion caused by wave action. 
45 Developers include 1) Macquarie, 2) CIP and SK E&C, 3) PPI and Wind Power Korea, and 4) Shell, Coens, and Hexicon. 
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4 Offshore Wind Technology Trends 
Technology advancements have played a key role in achieving the cost reductions experienced over the past 
few years that are enabling offshore wind energy to compete without subsidies in some energy markets. New 
technology and technical innovations are leading the industry to both lower costs and create new market 
regions. Continued cost reductions are allowing fixed-bottom offshore wind systems to compete in high-priced 
energy markets today, and floating wind technology, when matured, can open new regions that are currently 
inaccessible with existing technology (Gilman et al. 2016; WindEurope 2018). For many years, offshore wind 
technology advancements were measured by metrics, such as greater water depths and distances from shore 
(Beiter et al. 2016). More revolutionary technology advancements, such as floating wind turbines, promise 
larger payoffs in terms of dramatically greater siting options and wide-ranging increases in global electricity 
market penetration. 

Using NREL’s OWDB described in Section 1, this section relies substantially on empirical data for planned 
projects advancing through the pipeline to provide insight into global technology siting trends through 2024. 
The OWDB also provides insight regarding offshore wind turbine capacities, substructures, electric 
infrastructure, and logistical approaches for construction and maintenance activities. Much of the discussion is 
focused on fixed-bottom technologies, although floating technologies are also included. 

4.1  Siting Trends for Global Offshore Wind Projects 
Here we update trends observed in offshore wind fixed-bottom technology related to site characteristics of 
water depth and distance from shore. Figure 19 provides industry trends of four parameters—depth, distance, 
project status, and project size—and shows these trends for global offshore wind projects that have, at a 
minimum, advanced to the site-control phase. Global projects are color-coded by the project phase they have 
advanced to in the pipeline. 

 

Figure 19. Fixed-bottom offshore wind project depths and distance to shore 
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In the figure, the project size is indicated by the diameter of the bubbles. The relative scale is shown with a 
representative 50-MW project in the key. This figure indicates a possible global trend toward larger projects 
(i.e., larger bubble sizes) sited farther from shore (i.e., the largest bubbles are at the 1,000-MW scale), 
particularly for those projects in the permitting and approval phase of development. Projects located further 
distances from shore (as far as 200 km) are enabled by the shallow bathymetry of the North Sea, where 
projects can be sited far from shore while still using fixed-bottom foundations. 

Also included are the eight U.S. offshore wind fixed-bottom projects that have a viable pathway to an offtake 
agreement, have secured site control, and have significantly advanced in the permitting and regulatory 
process.46 These projects have similar characteristics with respect to water depth and distance to shore; 
however, given the limited sample, it is difficult to judge longer-term trends. There are over 20 GW of capacity 
in the auctioned lease areas but distances from shore do not exceed 60 km in these areas and depths range from 
20 to 65 m (Musial et al. 2013; BOEM 2019f). 

Also, projects sited too close to shore can trigger public acceptance issues. Turbines sited beyond a certain 
distance from shore will generally be less visible and could raise fewer objections. This “acceptable” distance 
will vary depending on many factors including the land-based terrain and demographics, turbine scale, climate, 
and proximity to populations (Krueger et al. 2011). In the United States, public acceptance issues led to the 
demise of the first proposed commercial-scale U.S. project, Cape Wind, which may have contributed to 
BOEM’s informal recommendation that new WEAs be at least 10 nautical miles (nm) from the shore (BOEM 
2018). Therefore, with respect to distance from shore, near-term U.S. projects are likely to fall in a narrower 
vertical band (18−60 km depth) in Figure 19 than the global spread of distances. With respect to depth, some 
of the lease areas (e.g., Massachusetts WEA) have significant depths between 50 and 65 m, where projects will 
likely be built (Musial et al. 2013). Therefore, these depths up to 65 m in the existing WEAs will likely result 
in U.S. projects having slightly higher average depths than current European projects. 

However, to judge a project’s cost and complexity, it is more important to consider the distance to critical 
infrastructure than distance to shore. As more projects are permitted and built, developers may have more 
difficulty finding suitable grid connection points, thereby making export cable runs longer. Further, the cost of 
the electrical infrastructure for a wind project depends more on the length of the export cable than how far it is 
offshore. Similarly, the distance to construction and service ports will also be a strong cost factor, because 
turbine access, as well as construction and operation and maintenance (O&M) costs are directly related (Beiter 
et al. 2016). 

As the industry matures, new technology and experience allows access to greater water depths, but projects 
with fixed-bottom foundations will pay a premium to access deeper water (Beiter et al. 2016). Floating 
foundations promise relief from water depth cost penalties, but it is still too early to fully understand these 
costs relative to fixed-bottom foundations on a commercial scale (Musial et al. 2016). However, if demand for 
offshore wind continues to increase, higher competing use constraints nearshore (e.g., fishing) may make it 
necessary to site some future Call Areas farther from shore, and therefore in deeper water where floating 
technology would be needed (Musial et al. 2016). 

In Figure 19, the trends toward distance from shore or deeper water are not clear because new additions are 
difficult to track on a time-dependent basis. Figure 20 and Figure 21 show distance from shore and water depth 
as independent variables as a function of time (year of commissioning) for installed projects to help illuminate 
these trends better. These plots show the span of actual projects built for each year from 2000 to 2018, and 
projections that were made based on data from projects in the pipeline out to 2024. These data, provided for 
each year, indicate the capacity-weighted averages, and the range of all projects showing the highest and 
lowest values. For most years, the number of projects is too small to provide statistical significance, but the 
overall trends out to 2024 can be inferred. Figure 20 indicates that the trend toward greater distances from 
shore may not be very strong. The data show there is a wider degree of variability from year to year, due, in 

 

46 Note Aqua Ventus I is not shown because it is a floating project with different metrics for water depth. 
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part, to enabling technologies like high-voltage direct current (HVDC) transmission, which has been used in 
the North Sea to export power long distances to shore in several German projects. 

 
Figure 20. Project distance from shore trend to 2024 

Similarly, Figure 21 shows the gradual trend in the global data toward greater water depths. 

 
Figure 21. Project depth trend to 2024 
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The project trend toward deeper water is more defined than the trend toward greater distances to shore. 
Substructure designs have incrementally improved to overcome depth limits, thereby allowing access to more 
sites. Some deployments have already been successfully made at 50-m depths, and installations up to 60-m 
depths and beyond are planned before 2024 (The Crown Estate 2018). In the United States, some of the 
foundations at the Vineyard Wind site will be near a 50-m water depth (Vineyard Wind 2018a). 

4.2 Offshore Wind Turbines 
Here we address the trends in offshore wind turbine technology. In 2018, the industry’s turbine manufacturers 
committed more confidently to increases in turbines size, indicating that a new 10-MW to 12-MW platform is 
under development for the next generation of turbines. This growth is being spurred by overall system cost 
reductions and energy production improvements associated with larger turbines. In addition, as the industry 
expands toward the Asian market (especially Taiwan, which committed to 5.4 GW earlier this year), turbine 
OEMs are beginning a serious effort to adapt turbines to extreme loads that may be generated by typhoons and 
seismic events. 

4.2.1 Offshore Wind Turbine Technology 
Offshore wind turbines are generally much larger than their land-based counterparts. Figure 22 shows global 
offshore wind turbine trends since 2000 along with the capacity-weighted47 average turbine rating (blue bars; 
left axis), capacity-weighted average rotor diameter (green line; right axis), and capacity-weighted average hub 
height (orange line; right axis). Note that the future projection through 2023 for weighted average turbine 
capacity, rotor diameter, and hub height is based on only the subset of projects (21,037 MW) that have 
announced an agreement or partnership with a turbine OEM. These projections show that turbines are expected 
to continue to grow over time. 

 
Figure 22. Offshore wind turbine rating, hub height, and rotor diameter 

 

47 A capacity-weighted average (weighted average) counts the contribution of a given characteristic (e.g., turbine rating) proportional to the amount of 
capacity (megawatts) the project delivers to the total capacity installed for a given year. 
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Although Figure 22 shows a steady turbine size growth trend, tracking the current and historical commercial 
deployments may not be the best way of predicting the absolute size of future wind turbines. To understand the 
cutting edge of new technology development, it is better to look directly at the turbine prototype development 
stage. This is especially important for offshore wind because the pace of turbine growth is much faster than 
land-based technology, and larger turbines are affecting all aspects of industry development including the 
economics, infrastructure, balance of plant, siting, and supply chain. 

Increasing turbine size is one of the major factors that has been attributed to the sharp cost declines in offshore 
wind. Larger capacity turbines generally yield lower balance-of-plant costs, fewer and faster installations, and 
lower maintenance, as well as more energy per unit of area. Recent cost information also indicates that in 
addition to these project cost-scaling benefits, unit turbine costs may not be rising with turbine capacity as 
originally predicted by early models, such as the 2006 NREL Cost and Scaling Model (Fingersh 2006; for 
more recent assessments see Graré et al. 2018; Valpy et al. 2017; BNEF 2018e). In fact, a higher turbine rating 
may not result in an increase in per-unit turbine capital expenditures (CapEx) ($/kilowatt [kW]) at all. This 
new trend may potentially be a result of efforts by turbine manufacturers to manage increases in component 
mass using advanced engineering innovations and manufacturing methods, and through improved efficiencies 
in production and delivery. Therefore, a 6-MW wind turbine might have a similar cost per kilowatt as a 10-
MW turbine. This trend may be incentivizing industry’s push to further increase turbine capacity. 

Because of these cost advantages, on a project level, developers will generally select the largest turbine 
available. At the end of 2018, the largest turbine installed was the MHI Vestas V164–8.8 MW turbine at the 
Aberdeen Bay (European Offshore Wind Development Centre) project in Scotland, but the V174-9.5 is now 
available for commercial use and was ordered for the Baltic Eagle project in Germany. These MHI Vestas 
turbines follow another industry trend to extend the nameplate power rating of the current turbine technology 
platforms for 6- and 7-MW turbines as high as possible by increasing drivetrain/generator capacities while 
maintaining rotor size. Most turbine manufacturers have conformed to this design approach over the past few 
years. In doing so, this has driven up the specific power rating48 for these turbines, which could lower capacity 
factors in the interim while pushing the turbine technology platforms to their maximum energy extraction and 
load limits. These high specific power machines may still be well-suited for high wind sites in European 
waters but may not be the most efficient for lower wind speed sites in countries such as China, Japan, and 
Korea, and in the Great Lakes, mid-Atlantic, and South Atlantic regions of the United States. 

In 2018, this trend in upscaling the existing turbine platforms was disrupted by the announcement of larger 
prototypes with increased rotor diameters—the next generation of offshore wind turbines on a new 10-MW to 
12-MW technology platform. In March 2018, GE announced the 12-MW Haliade-X turbine, which has a 
prototype in production that is scheduled for installation in Rotterdam in 2019, and ready for market in 2021 
(GE 2018b). The turbine is first in class, with a 12-MW direct-drive generator, 220-m rotor, and 140-m hub 
height. In January 2019, Siemens Gamesa announced the development of the SG10.0-193 DD turbine—a 10-
MW direct-drive turbine with a 193-m rotor—which is planned to be ready for market in 2022 (Siemens 
2019). This turbine would be a substantial departure from Siemens Gamesa’s current SG 8.0-167 DD platform. 
Other manufacturers, such as Senvion (formally Repower), have been following suit with their own 
development plans for turbines in the 12- to 16-MW range (Foxwell 2018c). From recent industry trade press, 
it appears that the industry is likely to increase turbine size beyond 12 MW (Windpower Monthly 2018; 
Snieckus 2018). 

To illustrate the pace at which turbines are growing in the offshore wind industry, Figure 23 shows the average 
turbine capacity growth from Figure 22 along with data contrasting the capacities of the largest prototypes 
available in the first year they were built since 2000. The turbine prototypes shown in Figure 23 were all later 
commercialized and have become part of the industry’s commercial pipeline (e.g., blue bars). 

 

48 Specific power is the nameplate power rating of a turbine divided by its rotor’s swept area in Watts/m2. 



43 | 2018 Offshore Wind Technologies Market Report 

 

 
Figure 23. Average commercial offshore wind turbine rating compared to prototype deployment by year 

Sources: Ragheb (2019), GE (2018), de Vries (2012), Composites World (2014), Adwen GmbH (2019),49  
Power Engineering (2005),50 4C Offshore (2017), Siemens (2013, 2019), Dvorak (2017) 

From analysis of press releases, it takes at least 3 years for a turbine manufacturer to go from the first 
prototype to commercial production (GE 2018a; Siemens 2019). Historically, in many cases, this process is 
longer. Figure 23 shows that although offshore wind industry turbine size is indeed increasing, the maximum 
size of wind turbines that will be installed in later years is much larger than the weighted averages, and in 2018 
there is no sign that offshore wind turbine growth is slowing down in spite of multiple logistical and 
infrastructure challenges. As shown, prototype capacity (shown in the colored symbols) has been consistently 
above the capacity of the weighted average turbine being installed. 

4.2.2 Typhoons and Earthquakes 
Offshore wind turbines are beginning to see more geographic diversity, especially as developers enter Asian 
markets wherein typhoons can bring extreme wave heights and wind speeds that exceed design specifications. 
Class 1A wind turbines are already designed to withstand wind gusts up to 70 meters per second (m/s) (156 
miles per hour) but in these Asia-Pacific regions (and later in southern latitudes of the United States), the 
probability of major tropical cyclones (hurricanes) that produce loads exceeding the present design limits (set 
by International Electrotechnical Commission [IEC] standards) becomes more likely. Specialized hurricane-
resilient designs are being developed to ensure that turbines, towers, blades, and substructures can withstand 
these extreme weather events. 

 

49 Note that AREVA is now a wholly owned subsidiary of Siemens Gamesa. 
50 Note that Repower now goes by the name Senvion. 
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Offshore wind turbines are currently designed using IEC 61400-01 and IEC 61400-03 standards, which define 
a 3-second maximum gust condition of 70 m/s (156 miles per hour) (IEC 2019a; 2019b). Oil and gas standards 
have been applied in the United States to manage the design of substructures. The recently released 2019 
edition of IEC 61400-01 and 61400-03-1, the primary design standards for wind turbines, just added 
provisions for a wind turbine typhoon class. Both Siemens Gamesa and MHI Vestas have begun to ruggedize 
their turbine designs to adapt them to hurricane loading and comply with a more rigorous certification process 
to upgrade for the local conditions, particularly as they try and enter the Taiwan offshore wind market (Hill 
2018). In some of these new offshore wind regions, there is also an increased threat of earthquakes; therefore, 
enhanced engineering activity to achieve seismic resilience has also been initiated. 

4.2.3 Offshore Wind Turbine Manufacturers 
Figure 24 shows the market share of each offshore turbine manufacturer for the cumulative installed capacity 
up to 2018, as well as the expected installations that have disclosed their intended turbine partner for near-term 
pipeline projects. After their merger, Siemens Gamesa continues to be the largest global supplier of offshore 
wind turbines, representing approximately 55% of installed capacity, or 12.3 GW, operating today. Siemens 
Gamesa is followed by MHI Vestas, with just over 15% market share. 

The right side of Figure 24 shows the OEM suppliers selected by developers for projects in the pipeline that 
have announced their turbine. The chart shows Siemens Gamesa’s share of projected total global capacity is 
likely to grow to 60.3% for new projects, whereas MHI Vestas is expected to hold on to about 14.5% total 
installed capacity. In addition, GE’s share of total installed capacity is projected to grow to 8.9%. Other OEMs 
showing increased market share include Goldwind and Ming Yang, companies that are building strength in the 
emerging Chinese market. 

 
Figure 24. Offshore wind turbine manufacturers by market share for 2018 (left) and future (right) 
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4.3 Fixed-Bottom Substructures 
Figure 25 shows the current mix of substructure types for fixed-bottom foundation projects operating at the 
end of 2018 along with the expected makeup of substructure types for the 37,203 MW of projects in the 
pipeline that have announced their intended substructure. In 2018, monopiles continued to dominate the 
operating fleet of global offshore wind turbines, representing 73.5% of the total market. Alternative 
substructure types, such as gravity-base, jacket, tripod, and floating foundations, each represent about 5% of 
the historical market share. 

 

 
Figure 25. Offshore wind substructure technology trends in 201851 

Looking into the future, on the right side of Figure 25, developers have indicated they plan to increase the use 
of jackets by roughly fourfold. This change corresponds to projects being developed in deeper water depths 
and increased manufacturing options for jackets. Gravity-base foundations are also slowly increasing their 
market penetration because they do not require pile driving during installation, which eliminates underwater 
noise and potential negative impacts to marine mammals. Floating foundations are required for projects in 
water deeper than approximately 60 m and are discussed later in the report. 

4.4 Electrical and Power System Technology 
4.4.1 Array Cables and Substations 
Buried, insulated, three-core copper cables are typically used for subsea array collector systems. Occasionally, 
aluminum cables are used as well. The array cables52 are designed to meet the requirements on physical 
strength, flexibility, and temperature characteristics of the offshore site. Array cables also incorporate fiber-
optic cables, plant control, and communications. Power conductor sizes for array cables are selected based on 

 

51 High-rise pile caps are offshore wind foundations that use a group of piles to support a flat, stable pad. The wind turbine tower is then installed on top of 
the pad. These foundations are primarily found in the Chinese market and deployed in shallow waters. 
52 Array cables are electrical cables that connect individual turbines to each other and an offshore substation or transmission cable. 
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their current carrying capacity and location in a string of turbines. Array cable cross sections at the end of the 
string can be as small as 150 mm2, and cables close to the substation can be 800 mm2 or larger. 

As shown in Figure 26, 42% of new intra-array cables energized in 2018 were supplied by Nexans, whereas 
JDR Cable Systems supplied 32.1% and Prysmian supplied 16.1%. These shares were calculated by counting 
the number of grid-connected turbines in each wind power plant during 2018 (WindEurope 2019). 

 

Figure 26. Number of turbines energized by supplier in 2018. Chart courtesy of WindEurope 2019 

With the commissioning of the Aberdeen Bay offshore wind power plant in 2018, Nexans has now supplied 
two new offshore wind plants with its new 66-kilovolt (kV) cable technology (Nissum Brending Vind in 
Denmark and Aberdeen Bay in the United Kingdom). As rated power capacity of offshore wind turbines 
continues to grow, project developers and operators are increasing use of 66-kV cable technology instead of 
the conventional 33 kV. In 2018, there were three projects that used 66-kV array cables versus only one project 
in 2017. Operation at a higher voltage offers important life cycle cost-efficiency benefits, such as the 
possibility of reducing the number of offshore substations, decreasing the overall length of installed cables, 
and minimizing electric losses (Nexans 2018). During 2018, the advantages of 66-kV technology have been 
demonstrated by Nexans in three pilot projects: the Blyth Offshore Demonstrator (United Kingdom), Nissum 
Bredning Vind (Denmark), and Aberdeen Bay (United Kingdom) wind power plants. All these projects are 
currently connected to the grid and generating power. Nexans has also supplied a range of products and 
accessories including 66-kV sea cables (array and export cables), power cable accessories (e.g., equipment 
bushings, connectors, coupling connectors, surge arresters, dead-end receptacles, junction cabinets), GPH 
connection technology, and preassembled cables (Nexans 2018). 

Continued development of several offshore projects in Southeast Asia has created new market opportunities 
for the undersea cable industry. For example, Formosa 1 is an offshore wind power plant being developed near 
Miaoli, Taiwan, by Formosa Wind Power Co in partnership with Macquarie Capital Group Limited, Ørsted, 
and Swancor Renewable. The 130-MW wind power plant will be Taiwan’s first commercial-scale offshore 
wind project (Power Technology 2018). In 2018, JDR Cable Systems delivered 21 km of interarray cable, 13 
km of export cable, and an additional 16 km of land cable to transmit power from the shore to the local 
substation. The 33-kV cables were manufactured at JDR’s facility in Hartlepool, United Kingdom, before 
being shipped to Taiwan for installation by Jan De Nul. The project is targeted for completion in 2019 (JDR 
2019). 
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4.4.2 Export and Land-Based Interconnect 
The electrical grid connection contributes significantly to the cost of an offshore wind power plant. It includes 
both offshore and land-based infrastructure and connects the wind power plant to the land-based electricity 
grid. AC offshore substations contain the common busbar for cable termination, protection, and switchgear, 
transformers that step up the voltage from a 33-kV or 66-kV array level to a 132- to 220-kV export level, and 
reactive power compensation. There is normally more than one AC substation in a large wind power plant, 
thereby providing a higher level of reliability and redundancy in the electrical system to reduce the impact of a 
single point of failure. Similarly, DC offshore substations contain an AC busbar, protection, and switchgear; 
AC transformers; HVDC power electronic station; and DC terminals. 

Typically, the AC export cables use conductor cores ranging from 600 mm2 to 1,200 mm2, although larger 
cross sections are possible. Various types of armoring can be used depending on seabed conditions, amount of 
vessel traffic, and water depth. 

In terms of export cables in 2018, eight export cables manufactured by NKT Group were energized, 
representing 53.3% of the annual market. Prysmian, Ls Cable & System, and JDR Cable Systems each had 
about a 13.3% share, and Nexans represented the remaining 6.7%, as shown in Figure 27 (WindEurope 2019). 
When calculating these shares in Germany, the export cables are considered to be the cables connecting the 
offshore wind power plants to the land-based grid, whereas in other countries the export cables are considered 
to be the high-voltage, alternating-current cables only. Note that these market shares were calculated by 
considering only the export cables in operating wind power plants. 

According to Market Research Consulting, the global submarine cable market accounted for $6.31 billion in 
2017 and is expected to reach $25.56 billion per year by 2026 (Market Research Consulting 2018). Such 
growth is expected because of rising demand in both offshore wind and oil and gas operations. Increasing 
demand for HVDC submarine power cables is also one of the major electrical supply chain trends for offshore 
wind observed during the forecast period. By geography, several regions in Europe are dominating the offshore 
power cable market because of rapid growth in numbers of offshore wind projects and rising demand for 
intercountry submarine power transmission links. Some key players in the submarine power cable market 
include Furukawa Electric, General Cable Corporation, Hengtong Group, Hydro Group, KEI Industries, LS 
Cable & System, Nexans, NKT Holding, Prysmian Group, Sumitomo Electric Industries, Tele-Fonika Kable 
S.A, ZTT International Limited, and TE Subcom. 

 

Figure 27. Share of energized export cables by supplier in 2018. Chart courtesy of WindEurope 2019 
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4.4.3 Transmission, Grid Integration, and Storage 
As the role of wind energy grows in the U.S. power grid, there is increased interest and requirement for it to 
provide essential reliability services. These services are critical to maintaining the reliability and stability of 
the grid, and historically were provided by large synchronous generators, mainly from fossil-fueled and 
hydroelectric generators (Denholm, Sun, and Mai 2019). 

In 2018 and early 2019, as state offshore wind policy commitments grew from near 5 GW to 20 GW by 2035, 
the challenge of integrating this amount of electricity into the existing land-based grid has begun to resonate as 
a high priority among the many developers, utilities, and state energy organizations (Business Network for 
Offshore Wind 2019). For some states like Massachusetts, New York, and New Jersey, injecting this amount 
of offshore wind represents up to 30% of their current electricity supply, which is likely to have significant 
impacts to the land-based grid and transmission system that have not been fully quantified. In the next year, the 
topic of offshore wind grid integration and grid planning is likely to gain more attention. 

In most of today’s power systems, wind (both offshore and on land) and solar generation still have a limited 
impact on grid operation because other generation sources can be dispatched. As the share of variable 
renewable generation becomes a major fraction of the total generation, electricity systems will need more 
flexibility services that can be potentially provided by the rapid response capabilities of electricity storage. The 
shift toward large-scale integration of energy storage into the power systems operation will need to be part of 
the energy planning process. 

In 2018, Masdar and the Norwegian company Equinor (formerly Statoil) installed, and started testing, a new 
battery system designed to store electricity generated by the 30-MW Hywind Scotland, the world’s first 
commercial-scale floating wind power plant. This battery energy storage system (BESS) project coupled with 
the offshore wind power plant is the first of its kind in the world. The goal of the project is to evaluate the 
capabilities of advanced storage technologies to optimize the release of electricity from renewable energy 
plants to transmission grids—from both a technical and commercial perspective. A conceptual diagram of 
interconnection between the offshore wind power plant located at a short distance from the shore and the land-
based BESS is shown in Figure 28 (Equinor 2018b). 

 

Figure 28. Near-shore offshore wind power plant operating with the land-based BESS. Illustration by NREL 

The BESS technologies can provide a wide range of utility-controlled and self-directed services (Benson 
2018). 

4.5 Floating Technology Trends 
Floating wind energy technology is advancing rapidly. Based on the resource capacity, the prospect for 
significant future deployment potential of floating wind seems similar to fixed-bottom wind but there are many 
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technology challenges that must still be solved. Some of these unique technology challenges for floating wind 
are discussed in this section. 

4.5.1 Floating Wind Turbines 
Like fixed-bottom technology, developers of floating offshore wind projects generally want to use the largest 
commercial offshore turbines available on the market. For example, WindFloat Atlantic in Portugal is planning 
to install three MHI Vestas V164-8.4 MW turbines, and the Kincardine project in Scotland is installing five 
MHI Vestas V164-9.5 MW turbines (Froese 2018; 4C Offshore 2019; Davidson and Weston 2018). The 
motivation is the same for both floating and fixed-bottom foundations: project costs are lower with larger 
turbines. To date, all offshore wind turbines used in floating applications have been designed for fixed-bottom 
applications. Therefore, the market information for turbines on fixed-bottom foundations applies directly to 
floating systems. Floating-specific turbines have not yet been designed but conceptual engineering studies 
suggest a greater value proposition for lightweight turbine components, which may help reduce overall system 
weight. Because the floating wind pipeline is still small, the demand for these floating-specific offshore wind 
turbines is not high enough for OEMs to take the turbine development risk. More certainty in a large future 
floating wind market will be needed to motivate the first generation of customized floating wind turbines. 

4.5.2 Floating Support Structures 
The cost of a floating offshore wind project depends on the characteristics of the support structure it uses. The 
cost of the support structure itself is important, but so is the support structure’s ability to help lower costs in 
other parts of the system, such as by enabling serial fabrication, inshore assembly, and commissioning, and by 
minimizing expensive offshore labor, including O&M. In addition, the coupled hydrodynamic-aerodynamic 
design of the floating system is the primary method for protecting the turbine from excessive loads and 
accelerations, especially under extreme conditions. Most floating projects in the pipeline plan to use 
semisubmersible substructures (see Table 11) because inherently, semisubmersible floating foundations have a 
shallow draft and are stable even after the turbine is installed. This allows for a full assembly and 
commissioning at quayside, and allows the full system to be towed from an inshore assembly port to an 
offshore station without the use of heavy-lift installation vessels. 

Figure 29 shows a capacity-weighted average of the substructure choices for all floating projects in the NREL 
OWDB at the end of 2018. 

 
Figure 29. Capacity-weighted average of floating substructure selection for the global pipeline 
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The chart shows that 94% of projects in the floating wind pipeline plan to use semisubmersible substructures. 
Approximately 4% use or plan to use spar technology, like the substructures deployed by Equinor on the first 
commercial floating wind project, shown in Figure 30 (Equinor 2018a). The remaining substructures are 
tension leg platforms and barges. 

As the industry deploys the next generation (second generation) of technology, new hybrid floating platform 
design concepts are being introduced that have desirable characteristics like the semisubmersible. In 2018, 
Stiesdal Offshore Technologies introduced the TetraSpar floater, which has a stable buoyant floating 
substructure with low draft to allow for inshore assembly but uses a flexible cable system to deploy a ballast 
weight at sea. The design incorporates a tubular steel base with a suspended underwater tetrahedral 
counterbalance. Innogy and Shell have partnered with Stiesdal to build a single turbine demonstration project 
in Norway that plans to use a 3.6-MW Siemens Gamesa turbine (Weston 2019). In November 2016, SBM 
Offshore won a contract to deliver three floating platforms for the 24-MW Provence Grand Large pilot wind 
energy project in the French Mediterranean. The SBM tension leg platform substructure design is unique 
because it is stable before attaching the mooring lines—an uncommon characteristic and one of the major 
drawbacks of conventional tension leg platforms. Both the TetraSpar and the SBM tension leg platform 
represent hybrid platform technologies that could challenge conventional semisubmersible technology for cost 
competitiveness and possible future market share. Figure 31 shows both designs. 

 

Figure 30. A 6-MW floating wind turbine in Equinor’s 30-MW array near Peterhead, Scotland, supported by a spar buoy 
floating platform. Photo courtesy of Walt Musial, NREL 



51 | 2018 Offshore Wind Technologies Market Report 

 

Figure 31. Second-generation floating wind concepts of alternative hybrid substructures. Images courtesy of Stiesdal 
Offshore Technologies (left) and SBM Offshore (right) 

One concern for floating projects in the United States and likely other parts of the world is the design of 
mooring systems for the depth characteristics of the U.S. Outer Continental Shelf. In the eastern United States, 
it is likely that floating technology could open large areas in the 60−100-m depth range for offshore wind 
development. Although this water depth is deep by fixed-bottom wind turbine standards, for floating, these 
depths are shallower than typical floating oil and gas rigs and are generally unique to offshore wind. Shallow 
water means shorter mooring lines, which act as shock absorbers to absorb hydrodynamic loading. If they are 
not long enough or heavy enough, platform loads could increase. New mooring system designs are needed to 
enable floating technology at shallow water depths. New designs are emerging already to allow projects to be 
sited in these water depths (4C Offshore 2019b). Conversely, because of the steep shelf on the Pacific Coast, 
floating projects will be located at sites with water depths up to 1,000 m or more. In these waters, the 
optimization of deeper water moorings is a different technology challenge because project developers are 
likely to be encouraged to reduce the footprint of their anchor circle and generally shorten the length of their 
mooring lines to minimize the impact to other users of the sea. In 2018, DOE and NYSERDA formed the 
National Offshore Wind R&D Consortium to address technical issues affecting developers in the United States 
and released a solicitation calling for engineering solutions to shallow and deep-water mooring design issues 
(NYSERDA 2019). 

4.5.3 Electrical Power Systems 
Floating turbines allow greater distances from shore, which can have several impacts on cost including the 
design of subsea electrical cabling and system configuration (e.g., consideration of HVDC) as well as logistical 
challenges during the project’s construction and operation phases (e.g., transport time, effective length of 
working day). 

Floating offshore wind platforms are constantly moving with the waves and winds acting on the structure. As a 
result, the attachment point for the electric cable is in motion as well. For a fixed-bottom foundation, this 
attachment point is firmly secured. The dynamic nature of floating platforms will require developers and cable 
manufacturers to develop dynamic cable designs to ensure that cyclic loads and bends on the cable will not 
compromise the system. This approach is important for turbine systems as well as possible floating 
substations. In March 2019, Prysmian announced that it had developed a specialized submarine cable system 
specifically designed for floating offshore wind applications. The company plans to test their new cable on the 
24-MW Provence Grand Large Demonstration in France (T&D World 2019). 
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JDR, a supplier of subsea power cables and umbilical cables to the global offshore energy industry, has been 
selected by WindPlus as the preferred cable supplier for the Windfloat Atlantic 25-MW floating wind power 
plant. The project—located off the coast of Viana de Castelo, Northern Portugal—will be the industry’s first 
application of dynamic cables operating at 66 kV with V164 floating wind turbine generators (WireTech 
2019). 

In April 2019, the Carbon Trust announced the five winners of its dynamic export cable competition as a part 
of the Floating Wind Joint Industry Project, which aims to accelerate and support the development of 
commercial-scale floating wind power plants. The project is a collaboration between industry partners EnBW, 
ENGIE, Eolfi, E.ON, Equinor, Innogy, Kyuden Mirai Energy, Ørsted, ScottishPower Renewables, Shell, 
Vattenfall, and Wpd, with support from the Scottish government (Carbon Trust 2019). 

4.5.4 Targeted Research in the United States 
The U.S. offshore wind industry is poised for substantial deployment of over 10 GW of electric-generating 
capacity over the next decade, but with only 30 MW operating there is some uncertainty about the transfer of 
largely European-based technology to the United States. The physical and economic characteristics of U.S. 
sites, supply chains, and offshore resources may present unique issues that would require additional research 
conducted outside the scope of individual commercial projects. To help address this concern, a new national 
technical research consortium was formed in 2018 with the purpose of conducting new technology research to 
benefit the end users (developers) of the U.S. market. Under an open funding opportunity, DOE committed 
$20.5 million in 2018 to NYSERDA to form a National Offshore Wind R&D Consortium. The corporation 
agreed to match the DOE contribution and launched a funding organization to make research and development 
awards on prioritized topics that will support developers in achieving their near-term deployment and cost 
targets. The first solicitation was released by NYSERDA on March 29, 2019, and the first awards are expected 
in 2019. As the organization matures, NYSERDA envisions that the consortium will become a nonprofit entity 
with a self-sustaining mission that extends well beyond the initial 4-year time frame (NYSERDA 2019). 



53 | 2018 Offshore Wind Technologies Market Report 

5 Cost and Pricing Trends 
The PPA and price schedule agreed upon between Vineyard Wind LLC and Massachusetts electric distribution 
companies in July 2018 offers the first market-based reference point for the price and cost of commercial-scale 
(800 MW) offshore wind generation in the United States. It suggests that the Vineyard Wind project off 
Massachusetts falls within the price range of European offshore wind projects, with an expected start of 
commercial operation between 2022 and 2023. This PPA was established against the backdrop of continued 
price and commensurate cost reductions in major offshore wind markets from 2016 to 2018. Section 5.1 
provides a discussion of price trends for fixed-bottom projects, including an analysis of the PPA price point for 
the Vineyard Wind project. Section 5.2 summarizes LCOE trends for fixed-bottom projects, with subsections 
on the constituent parts of LCOE (i.e., CapEx [Section 5.2.2], turbine costs [Section 5.2.3], operational 
expenditures (OpEx) [Section 5.2.4], and financing [Section 5.2.5]. Section 5.3 summarizes cost trends for 
floating technology. 

5.1 Fixed-Bottom Pricing Trends 
Figure 32 shows (adjusted) strike prices from recent offshore wind auctions held in Germany, the United 
Kingdom, the Netherlands, Denmark, and the United States, for projects to be commissioned between 2017 
and 2025. 

 

Figure 32. Adjusted strike prices from U.S. and European offshore wind auctions. Reprinted from Beiter et al. (2019) 

Notes: *Grid and development costs added; **Grid costs added and contract length adjusted; includes data for 
commercial-scale projects only 

The winning auction prices (commonly referred to as “strike prices”)53 that are shown in the figure were 
adjusted by NREL for contract length, grid connection, and revenue mechanism for an “all-in” price 

 

53 The strike price for an offshore wind project from an auction is usually the lowest bid price at which the offering can be sold. The strike price usually 
covers a specific contract term for which the project will be paid for the energy (and possibly other products or attributes) produced. The offeror of that 
strike price is awarded the rights to develop a particular parcel under predetermined conditions set in the tender offer that may vary by country or market. 
The strike price should not be confused with levelized cost of energy, which may be calculated using different financing and cost assumptions. 
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comparison (see Musial et al. 2017 for a more detailed description).54 These adjustments were made to account 
for differences in project scope. For example, under German award terms, the project developer is only 
responsible for expenditures related to intra-array cabling and the offshore substation but not for the rest of the 
export cable system. Adjustments were made to the German projects to add the expected cost of the export 
cable and land-based grid connection back into the price. 

The data suggest a trend of declining price levels from approximately $200/MWh (2017−2019 COD) to 
approximately $75/MWh for projects with a 2024–2025 COD.55 These reductions in the prices for procuring 
offshore-wind-produced electricity were achieved through a combination of favorable siting characteristics; 
increased project size; continued optimization of technology and installation processes; improved market, 
regulatory, and auction design structures; increased competition within the supply chain; favorable 
macroeconomic trends; and strategic market behavior. 

5.1.1 Vineyard Wind PPA (Lease OCS-A-0501) Analysis 
On July 31, 2018, Vineyard Wind LLC and the Massachusetts electric distribution companies submitted a 20-
year PPA for 800 MW of offshore wind generation and renewable energy certificates to the Massachusetts 
Department of Public Utilities for review and approval. The Vineyard Wind/Massachusetts PPA established a 
contract for procurement of electricity from two 400-MW facilities that enter commercial operation in 2022 
(facility 1)56 and 2023 (facility 2), respectively, at a specified pricing schedule (Massachusetts Department of 
Public Utilities 2018a, 2018b). Key contractual terms and project filings from the Vineyard Wind LLC Draft 
Environmental Impact Assessment (Vineyard Wind 2018a), construction and operations plan (Vineyard Wind 
2018b), and the independent evaluator report (Peregrine Energy 2018) are shown in Table 12. 

The documented first-year price for delivery of offshore wind generation and renewable energy certificates 
under the Vineyard Wind/Massachusetts PPA is $74/MWh (2022$) for facility 1 (400 MW) and $65/MWh 
(2023$) for facility 2 (400 MW), but these prices do not reflect all of the revenue that the project will generate, 
and are therefore lower than the data shown in Figure 32. To allow for a more accurate comparison with the 
adjusted European auction prices, Beiter et al. (2019) calculated a levelized PPA price, accounted for revenue 
streams outside of the PPA,57 and excluded U.S. tax benefits (i.e., election of the investment tax credit [ITC]). 
The resulting (adjusted) PPA price was estimated to be $98/MWh (2018$). 

Although this (adjusted) “all-in” price level of $98/MWh is significantly higher than the reported first-year 
PPA prices, the data in Figure 32 show that the project costs are in line with European project bids for the 
same time frame. This suggests that the generally anticipated price (and cost) premium for the nascent U.S. 
offshore wind industry in comparison to offshore wind projects in the established European markets might be 
much less pronounced than has widely been expected by many analysts. Earlier cost analyses estimated LCOE 
between $120/MWh and $160/MWh for a commercial-scale offshore wind project built in the northeastern 
United States in the early 2020s (see e.g., Beiter et al. 2017; Musial et al. 2016; Maness et al. 2017; Kempton 
et al. 2016). 

 

54 In general, these adjusted costs are higher than the unadjusted strike prices but still reflect a steep decline in price for European offshore wind projects 
installed out to the 2025 COD. 
55 Note that many of the projects shown in Figure 32 with future CODs have not yet reached the financial investment decision, and some caution is 
appropriate when determining whether these projects will reach COD. 
56 Vineyard Wind LLC has recently reported its intent for both facilities to be in operation by the end of 2022, ahead of the commercial operation date 
indicated on initial fillings (Vineyard Wind 2018c). 
57 One of the revenue streams outside of the PPA considered is sales into the ISO-New England (ISO-NE) Forward Capacity Market. Note that in its 
capacity auction FCA #13 held on February 4, 2018, Vineyard Wind did not qualify for the renewable technology resource exemption, which allows a 
resource to be exempt from the ISO-NE minimum-offer price rule. Vineyard Wind participated in the ISO-NE substitution auction and secured 54 MW of 
capacity. ISO-NE filed tariff changes on November 30, 2017, to allow offshore wind resources located in federal waters, including Vineyard Wind, to 
qualify for renewable technology resource treatment in future auctions. These tariff changes were approved by the Federal Energy Regulatory Commission 
on January 29, 2019 (ISO Newswire 2019). 
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Table 12. Vineyard Wind LLC/EDC PPA Contract Terms58 

 PPA 1 PPA 2 Notes Source 

Capacity [MW] 400 400 N/A a, b 

Commercial operation 
date 

January 15, 
2022 

January 15, 
2023 

N/A a, b 

Delivered product Energy and renewable energy 
certificates 

N/A a, b 

First-year PPA price 
[$/MWh] 

74 $2022/MWh 65 $2023/MWh N/A a, b 

PPA duration [years] 20 N/A a, b 

Escalation factor [%] 2.5 N/A a, b 

Vineyard Wind LLC Project Filings 

Wind speed [m/s] 9.3 Simple average of the entire Vineyard Wind 
lease area c 

Net capacity factor [%] 45 Average capacity factor reported by Vineyard 
Wind; assumed to be net capacity factor d 

Average water depth [m] 42 

The construction and operations plan indicates 
water depths in the northern half of the lease 
area range from 35 to 49 m; 42 m is the 
average   

d 

Substructure type Monopiles 

Vineyard Wind has indicated that it prefers to 
use monopiles but may deploy jackets for up to 
400 MW of capacity depending on seafloor 
conditions 

d 

Turbine rating [MW 8 Turbine rating will range between 8 and 10 MW d 

Export cable length [km] 69.2 Generator lead line proposal selected by buyer 
(Vineyard Wind LLC procures all cables from 
turbine to point of interconnection); point of 
cable landfall: New Hampshire Avenue 

e 

Land-based cable 
length [km] 

9.65 Generator lead line proposal selected by buyer 
(Vineyard Wind LLC procures all cables from 
turbine to point of interconnection); 
interconnection point: Barnstable 

e 

O&M port distance [km] 60 O&M port: Vineyard Haven d 

Installation port 
distance [km] 

92 Installation port: New Bedford Commerce 
Terminal d 

ITC [%] 18 18 Assumes safe harbor provision through 
expense of 5% of the overall project cost by the 
end of 2018 (facility 1) and 2019 (facility 2) 

f 

Source: Reprinted from Beiter et al. (2019) 
a Massachusetts Department of Public Utilities (2018a) 
b Massachusetts Department of Public Utilities (2018b) 
c Musial et al. (2017) 
d Vineyard Wind (2018b) 
e Vineyard Wind (2018a) 
f Peregrine Energy (2018) 

 

58 These terms are derived from the PPA contract between NSTAR Electric Company d/b/a Eversource Energy and Vineyard Wind LLC; similar contract 
terms apply to the other electric distribution companies that have separate contracts with Vineyard Wind LLC.   
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The following is a set of factors that may help explain how Vineyard Wind may have been able to achieve 
lower-than-expected prices, which are on par with the European price reductions shown in Figure 32: 

• The ability to import major technology components from Europe and Asia (e.g., nacelles, blades, cables) 

• Favorable offtake conditions for electricity produced by offshore wind in the United States (e.g., 
relatively low merchant risk compared to the terms of recent European tenders) 

• Use of state-of-the art technology solutions expected from early U.S. projects (e.g., Vineyard Wind LLC 
has announced its intent to procure the V164-9.5 MW turbine [MHI Vestas 2018]) 

• Project size of 800 MW that is comparable to large European projects 

• Developer’s experience with installing and operating offshore wind plants globally 

• Successful demonstration of offshore wind technology at the Block Island Wind Farm may have lowered 
some risk perceptions 

• Strategic bidding by tender participants for entry into emerging U.S. market (e.g., to gain “first-mover” 
advantages) 

• U.S. market pipeline visibility and growing state policies (see Section 2) 

• Industry consolidation as evidenced by Deepwater Wind’s acquisition by Ørsted in December 2018 

• Intensified competition within the global and U.S. supply chain and among bidders. 

This price signal from the Vineyard Wind/EDC PPA could be indicative of subsequent procurement prices of 
U.S. commercial-scale offshore wind generation in the 2020s. However, a combination of factors determines 
future price and cost levels (Musial et al. 2016). Massachusetts legislation H.4568 requires future offshore wind 
generation procured under its capacity mandate of 1,600 MW59 to produce a price below the Vineyard Wind 
LLC/EDC PPA contract price.60 This will require additional cost reductions amid a tax environment that is 
expected to become less favorable with the ITC phase-out underway (see Section 5.2.6). It is also possible that 
the Vineyard Wind LLC/EDC PPA price could have benefited from one-time effects, such as strategic bidding 
behavior among market entrants to gain first-mover advantages for subsequent U.S. offshore wind tenders. 

Beyond Vineyard Wind, there is only a limited number of price signals from U.S. projects but their project 
sizes are smaller than 250 MW. The prices for these small-to-medium size projects are shown in Section 2.4. 

5.1.2 European Auction Results and Outlook 
Major offshore wind auctions were held in Germany and the Netherlands during quarter 1 (Q1) and Q2 of 
2018. Auction activity ceased during the second half of 2018. Table 13 lists the auctions held in European 
markets during 2018. These were described in greater detail in the 2017 Offshore Wind Technologies Market 
Update (Beiter et al. 2018), as they all took place in early 2018. 

 

59 Massachusetts legislation H.4568 mandates the procurement of 1.6 GW of offshore wind capacity by 2027. 
60 The Massachusetts legislature is considering a change to this requirement, which would adjust the procurement price of the previous solicitation for the 
availability of federal tax credits, inflation, and incentives (amendment 280 to H.3800; H.3801). 
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Table 13. Offshore Wind Auctions During 2018 

Project Country Auction Award Date Capacity 
(MW) 

Auction Price 
(2016$/MWh) 

Adjusted 
Auction Price 

Estimate 
(2016$/MWh) 

Borkum Riffgrund 
West 1 Germany Second Auction 

(§ 26 WindSeeG) 04/27/18 
420 0 ~79 

Gode Wind 4 132 118 ~115 

Hollandse Kust Zuid 
III and IV Netherlands  03/19/18 700 0 ~74 

Note: For more details on these auctions, see Beiter et al. (2018). 

In Germany, no further auction activity is expected for a 3-year period after conclusion of the country’s first 
two rounds of auctions held under the §26 Offshore Wind Act (WindSeeG) during 2017−2018. Although the 
German coalition government signaled it may hold an extra tender, it has not formally proposed another 
auction round to date ahead of 2020 (Foxwell 2018a). Industry groups have requested to “advance grid 
expansion and optimization and reduce regulatory hurdles for sector coupling” (German Offshore Wind 
Energy Foundation 2019). After awarding Hollandse Kust Zuid I and II projects (700–750 MW) on March 19, 
2018, in a zero-subsidy bid, no additional tender was conducted during 2018 in the Netherlands. Tenders for 
Hollandse Kust (zuid) wind farms III and IV (700 MW) are scheduled to be held in March 2019 with awarded 
projects expected to commercially operate by 2023. The United Kingdom will continue its tender activity with 
a third contract-for-difference allocation round (“AR3”) in May 2019. The tender budget is specified at £ 60 
million, with a delivery cap of 6 GW.61 The last award in the United Kingdom was made during its contract-
for-difference 2 round in 2017 (“AR2”). After inactivity during 2018, Denmark has selected the location of a 
new offshore wind facility (800 MW) off Nissum Fjord to be auctioned during 2019 with a COD between 
2024 and 2027. 

5.2 Fixed-Bottom Offshore Wind Cost Trends 
5.2.1 Levelized Cost of Energy  
Offshore wind is among the renewable energy technologies that has experienced a rapid cost decline in recent 
years. It is commonly expected that this cost reduction trend will continue globally and will be realized in the 
United States as the market emerges. Figure 33 provides a survey of LCOE estimates and projections for fixed-
bottom technologies from a variety of research organizations and consultancies. 

 

61 Note that various technologies can bid under the United Kingdom tender scheme, including (but not limited to) offshore wind. However, in previous 
auctions, offshore wind was awarded the largest share.  
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Figure 33. Global LCOE estimates for fixed-bottom offshore wind62 

Sources: WindEurope (2018), Danish Ministry of Energy, Utilities and Climate (2018), Valpy et al. (2017), Beiter et 
al. (2017), Wiser et al. (2016), Barla (2018), BNEF (2018b, 2018c), Kempton et al. (2016), IRENA (2018), ORE 
Catapult (2015), and Lazard (2018) 

In Figure 33, the 2018 cost projections are shown in solid lines, whereas earlier studies are plotted with dashed 
lines. The wide blue trend line represents an exponential fit of the most recent data from studies published in 
2018, as well as Valpy et al. (2017) projections, which extend to 2032. This trend line suggests a decrease 
from LCOE levels of about $120/MWh in 2018 to $50/MWh by 2030. The trend line is meant to serve as a 
visual reference to focus on the most recent cost projections. 

Projections informed by a learning curve approach offer a complementary method for forecasting future cost 
reductions (Wiser et al. 2016). Based on industry growth projections, the cumulative capacity of the global 
industry is likely to experience approximately three doublings, or a total growth of eight times its current 
capacity, by 2030. IRENA (2018) estimates a learning rate for offshore wind of approximately 14% per 
doubling over the period 2010−2020, which would indicate possible LCOE reductions of over 35% based on 
industry growth projections of 154−193 GW globally by 2030 (see Section 3.2.3). 

5.2.2 Capital Expenditures 
CapEx are the single largest contributor to the life cycle costs of offshore wind power plants and include all 
expenditures incurred prior to the COD. Figure 34 shows the reported CapEx over time for operational projects 
as well as for those in various stages of the near-term project pipeline globally. Each bubble represents the cost 
estimate (in terms of $/kW) for a single project and bubble size represents the project’s capacity. 

 

62 “LBNL” in the figure refers to Berkeley Lab 

5

Exponential 
trend-line of 
recent studies  
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After a period of increasing project CapEx until 2014 (Musial et al. 2017), an industry trend of declining 
CapEx has developed, with a capacity-weighted average CapEx of $4,350/kW in 2018 globally. WindEurope 
reported a European project CapEx of $2,870/kW in 2019, a 45% reduction since 2015 (Brindley 2019). 
Reported project data suggest a gradual decline of CapEx to levels in the range of $2,500−$4,000/kW between 
2020 and 2030. The underlying data for Figure 34 include considerable variation of CapEx within a given year. 
For projects with a COD in 2018, CapEx ranges from  approximately $2,470/kW (Jiangsu Luneng Dongtai 
project, China [200 MW]) to $6,500/kW (Galloper project, United Kingdom [353 MW]) among projects with 
capacities greater than 100 MW. Several factors may possibly explain the variation in CapEx within a given 
year and over time (Smith, Stehly, and Musial 2015), including: 

• Varying spatial conditions (e.g., water depth, distance to port, point of interconnection, and wave height 
of sites that affect technical requirements of installing and operating a wind farm) 

• Project size 

• Different levels of supply chain shortages (e.g., components, vessels, and skilled labor) 

• Changing prices for commodities and energy 

• Macroeconomic trends, such as fluctuating exchange rates  

• A change in the appreciation of the costs and risks associated with offshore wind project implementation, 
which reflects in pricing strategies from equipment suppliers and installation contractors. 

 
Figure 34. Capital expenditures of global offshore wind projects by commercial operation date and project capacity 

Note: Only projects with CapEx greater than $800/kW included. 

Note that only limited CapEx data are available for any given year before 2010 and after 2025. As a result of 
this relatively small sample, and the projects’ early planning stages in which firm contracts for capital 
equipment have yet to be executed, the level of confidence is relatively low for some years. 

CapEx has been reported for 67,185 MW of global offshore wind projects. Figure 34 shows the announced costs 
for 123 installed projects (20,198 MW), 21 projects (7,198 MW) that have started construction, 14 projects (4,848 
MW) that have secured financial close, 56 projects (34,009 MW) that have received regulatory approval, 5 
projects (575 MW) in the permitting process, 1 project (300 MW) that is still in the planning phase, and 8 projects 
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(58 MW) that are decommissioned. These CapEx data have some uncertainty for various reasons: 1) the CapEx 
data are normally self-reported by developers and difficult to verify independently, 2) there is limited 
transparency into the financial impact of cost overruns, and 3) it is often unclear whether the reported CapEx 
fully captures the total cost of installing the project and connecting it to the grid.63 When viewed together, though, 
these data can provide insight into the long-term cost trends. Generally, greater confidence can be placed in cost 
estimates that are in more mature stages of the project life cycle (i.e., costs for projects that have reached the 
financial investment decision are typically more accurate than for a project that has not yet received permits); 
however, preliminary estimates provide insight into developer expectations about cost trends. 

5.2.3 Wind Turbine Cost 
Offshore turbine costs are estimated to be between 30% and 45% of the total CapEx. Typically, turbine price 
data come from turbine supply agreements that are negotiated for each project, but because of their proprietary 
nature these data are very limited. Turbine prices may vary considerably among specific projects. Some of the 
factors in turbine pricing include delivery costs to the staging port, warranty period (typically 5 years), 
availability guarantees, project order size, turbine attributes (e.g., turbine rating and drivetrain topology), 
market competition, timing, and specific strategic market behavior (e.g., first-mover advantages, customer 
retention). Turbine CapEx has declined rapidly over the last few years, which has led to a considerable spread 
in price estimates found in publicly available literature sources. Figure 35 shows turbine CapEx estimates 
published between 2016 and 2019, which illustrate considerable variation yet a general trend of price decline 
in turbine CapEx between 2010 and 2030. 

 
Figure 35. Turbine CapEx trend estimates 

Sources: Valpy et al. (2017),64 Kempton et al. (2016), BVG Associates (2019), and BNEF (2018e) 

Available cost studies indicate that turbine CapEx could range between $800/kW and $1,200/kW in 
2018−2019. BNEF (2018d) numbers were the lowest and estimate a reduction trend reaching $640/kW by 
2025. Valpy et al. (2017) illustrates the impact from larger turbine ratings of 6 MW (2019), 10 MW (2022), 
and 12 MW (2027 and 2032) on turbine CapEx. The increase in turbine CapEx from Valpy et al. (2017) is 
found to be relatively small on a $/kW basis, which would allow for a significant decrease of total system costs 

 

63 For example, it is unclear if the announced capital expenditure values include soft costs, such as construction, financing, insurance, or fees. 
64 Note: In contrast to the other sources, this estimate from Valpy et al. (2017) explicitly includes the impact from an increase in turbine rating (over time) 
on turbine CapEx ($/kW) (i.e., from turbine ratings of 8 MW [2018] up to 12 MW ([2027 and 2032]). 
 

trend-line from 
internal NREL 
cost model  
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on a $/MWh basis. Kempton et al. (2016) estimated considerably higher turbine CapEx from their 2016 study 
but show a similar cost reduction rate as BNEF (2018d). 

The highest commercially available turbine rating is expected to grow from 9.5 MW in 201865 to 15 MW or 
higher over the next decade (see Section 4), which presents one of the primary areas for future cost reduction 
(e.g., Wiser et al. 2016). Using higher-rated turbines for a given project size reduces the number of turbines to 
be installed and serviced, effectively decreasing the unit costs for balance-of-station ($/kW) and O&M 
activities ($/kW/year). In addition, consultation with industry experts and turbine manufacturers suggests that 
higher turbine rating may not necessarily result in an increase in turbine CapEx ($/kW). Turbine manufacturers 
have reportedly been able to increase turbine rating without increasing the unit cost of the turbine ($/kW). 
Through continued innovations, such as the use of lightweight materials, advanced manufacturing methods, 
systemwide load control, and economies of scale in production and delivery, turbine manufacturers may be 
able to offset other cost increases (such as specific mass increases) caused by upscaling. Some evidence of this 
trend might be found in a review of the GE Haliade-X technical specifications by Pondera Consult, which 
reports only a slight increase in specific mass for the Haliade-X turbine at 68.8 tonnes per megawatt (t/MW)—
including the nacelle, blades, and hub—compared to the MHI Vestas V164-8MW specific mass of 62.5 t/MW. 
This emerging trend in turbine lower mass/cost growth must be further validated but could provide a further 
economic motivation for upscaling to larger turbines (de Vries 2019).66  

5.2.4 Operational Expenditures 
OpEx cover all costs incurred after COD—but before decommissioning—that are required to operate the 
project and maintain turbine availability to generate power. These expenditures are generally thought to 
contribute between 20% and 30% to life cycle costs for offshore wind projects, depending on site 
characteristics. The strongest drivers are distance from the O&M port, accessibility limits related to local 
meteorological ocean conditions (e.g., wave height), and turbine rating (i.e., fewer, larger turbines suggest 
lower O&M costs per megawatt). To optimize the balance between OpEx and availability, operators adopt 
different logistical strategies for individual projects depending on site conditions (DNV GL 2013). OpEx for 
offshore wind projects are subject to considerable uncertainty because of a lack of empirical data. Although 
wind project owners commonly report CapEx, they rarely report OpEx. 

5.2.5 Financing 
In contrast to fossil-fueled power plants (e.g., natural gas or coal), variable costs of offshore wind plants are 
relatively small, and most lifetime costs are incurred up-front through CapEx for the development and 
construction of a project. These up-front expenditures generally require investment volumes of more than $1 
billion for utility-scale projects (>200 MW).67 The financing rate of a project, commonly expressed in terms of 
the weighted-average cost of capital,68 has considerable impact on lifetime project costs (i.e., LCOE) because 
it determines the annual debt service and equity repayment for the initial (CapEx) investment. 

During 2018, offshore wind projects in Europe and Asia continued to access low-cost capital, consistent with a 
broader trend of declining equity and debt rates for renewable energy asset financing in recent years. Nearly 
$12 billion was invested in new European offshore wind capacity (4.2 GW) during 2018, which comprised 
24% of the total investment in new power generation assets in Europe.69 Although the total investment volume 
is lower compared to the levels between 2015 and 2016, installed capacity levels were considerably higher “as 
a result of cost reductions and sector maturity, particularly for offshore wind” (Brindley 2019). In Europe, 
project finance dominated offshore wind investment transactions during 2018 with a share of 77%. This 
drastically reverses the trend of widespread balance-sheet financing from previous years and reflects growing 

 

65 MHI Vestas V164-9.5 MW turbine. 
66 Note that the described trend between turbine rating and turbine CapEx may only apply to a certain range of turbine ratings. 
67 For instance, the 800-MW Vineyard Wind project has a reported investment volume of approximately $2 billion (Renewables Now 2018). 
68 Weighted-average cost of capital is the average cost of all sources of capital based on the percentage contribution to the total capital structure. 
69 Major offshore wind projects that reached their financial investment decision were Moray East and Triton Knoll (both in the United Kingdom) and 
Borssele III and IV (the Netherlands). 
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comfort with the risks associated with constructing and operating an offshore wind plant, as well as the entry 
of smaller developers who can take advantage of a favorable lending market (Brindley 2019). Table 15 depicts 
financing conditions typical for European offshore wind projects between 2006 and 2018 (Guillet 2018). The 
share of debt in European project financing has been consistently at or above 70% since 2012, including in 
2018. Brindley (2019) reports debt share of up to 90% for European offshore wind financing in 2018, 
exceeding those of land-based wind farms. These financing terms are generally expected to carry into 2019 
(Brindley 2019). 

Table 14. Typical Financing Conditions for European Offshore Wind Projects 

Year Debt-to-Equity Ratio Pricing70 (Basis Points) 

2006−2007 60:40 150−200 

2009−2011 65:35 300−350  

2012−2013 70:30 200−250  

2014−2015 70:30 200−250  

2016−2017 75:25 150−225  

2018 70:30 120−175  

Source: Reprinted from Guillet (2018) 
Note: Year 2008 not available from source. 

Debt 
Debt rates for global offshore wind financing remain at historically low levels, ranging between 3% and 4% 
for 15-year debt terms (Guillet 2018). Debt maturity (post completion) ranged between 10 and 18 years, 
depending (among other factors) on the length and structure of the offtake conditions. These debt terms 
correspond to land-based wind financing in the United States (Wiser and Bolinger 2018). Consultation with 
industry experts suggests that debt financing rates for commercial-scale offshore wind projects will be similar 
to commercial-scale projects in the United States. 

Equity 
Driven by high demand for relatively predictable long-term cash flow and technology characteristics that are 
increasingly well-understood, equity rates for offshore wind have decreased in recent years. A greater variety 
of equity investor classes seems to be comfortable with the risk profiles of offshore wind, such as pension and 
insurance funds. Further, equity refinancing of operational projects has become more prevalent in established 
offshore wind markets. During 2018, the debt refinancing volume was nearly $10 billion for four European 
offshore wind farms completing their construction phase (Brindley 2019). 

Emerging information for the U.S. market suggests that European financing terms are generally applicable to a 
U.S. project finance context. In the United States, it is generally expected that several different types of entities 
will participate in the financing of commercial-scale offshore wind projects, including commercial banks, 
export credit agencies, and institutional investors (e.g., pension funds, insurance funds, and infrastructure 
investors). The engagement of Copenhagen Infrastructure Partners in the Vineyard Wind project may indicate 
that major international infrastructure investors recognize the potential of the U.S. offshore wind market. A 
similar motivation might apply to the market entry of major oil and gas corporations as well as supply chain 
companies (i.e., manufacturers and marine contractors) acting as offshore wind investors globally and in the 
United States. 

 

70 Basis points are indicated above the London Interbank Offer Rate. One basis point is equal to 1/100 of a percent and 100 basis points equals 1%. 
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Important U.S.-specific financing considerations include, but are not limited to: 

• Tax Credits. Offshore wind projects in the United States may currently elect the ITC or production tax 
credit. It is commonly expected that U.S. offshore wind projects will have a preference to elect the ITC; 
however, choosing between election of the ITC versus the PTC depends on a number of financial and 
legal considerations influenced by the anticipated energy production and operational risks. Pursuant to 
the Consolidated Appropriations Act, 2016 (P.L. 114-113), these tax credits are on a phase-down 
schedule (Table 15), thereby limiting the number of offshore wind projects that are expected to benefit 
from these tax provisions. Some large-scale projects have reportedly grandfathered their election of the 
ITC/production tax credit by commencing “physical work of a significant nature” on the facility or by 
incurring at least 5% of the total cost of the facility under the ITC phase-down rate schedule (Deloitte 
2017). During 2018, some concerns were raised whether large-scale projects, such as the 800-MW 
Vineyard Wind project, would be able to raise unprecedented volumes of tax equity financing for a 
single project of up to $600 million (Deepwater Wind 2018). Financial close of the Vineyard Wind 
project is expected during 2019 and will allow for a better understanding of whether enough tax equity is 
available at these investment levels. Election of these tax credit provisions influences the optimal 
financing structure of an offshore wind project with a higher share of equity and back-leveraged (i.e., the 
loan is collateralized by the sponsor’s equity in the project), so that the benefits from the tax incentive 
can be fully utilized. As a result of the tax credit phase out, optimal offshore wind financing structures 
are expected to be impacted (i.e., lower equity share). 

Table 15. ITC Phase-Down Rate Schedule 

Construction Start Before Applicable ITC Rate 

1/1/2017 30% 

1/1/2018 24% 

1/1/2019 18% 

1/1/2020 12% 

On or after 1/1/2020 0% 

Source: Reprinted from Deloitte (2017) 

• Installation and operation contingencies. Consultation with industry experts suggests that early 
commercial-scale U.S. projects might expect higher contingency levels relative to the established 
European offshore wind markets. These serve to account for less experience in U.S. offshore wind power 
plant installation and operation with the risk of incurring delays and interruptions in the supply chain, 
marine logistics, and permitting processes. 

• Offtake mechanisms. Current U.S. offtake mechanisms (Section 2.4.1) are generally seen as attractive 
to global offshore wind developers because of their relatively low merchant price exposure. Higher 
uncertainty in revenue streams and declining margins in established offshore wind markets in Europe 
and Asia might have been primary factors in yielding the high bid prices for lease areas auctioned during 
2018. 
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• Permitting. In the United States, a federal, state, and local permit to construct and operate a wind power 
plant is not included in a lease award. This might introduce additional risk from legal action, permitting 
delays, and stranded assets compared to acquiring a fully permitted lease area.71 

The Vineyard Wind PPA pricing suggests that there is only a small premium for “new market” risk (Beiter et 
al. 2019). Consultation with industry experts suggests that investors are available for the different types of risk 
profiles of each project phase (e.g., developers, private equity, independent power producers, utilities, tax 
equity, green banks, export credit agencies, manufacturers). A variety of financial vehicles could be utilized to 
mitigate the risk exposure of early projects, including tax incentives, bonus appreciation, loan guarantees, and 
financial hedging products. Coincident with the phase out of tax credits over the next few years, high RPS 
requirement levels are starting to take effect in coastal states, which might mitigate some of the lost tax 
benefits. 

5.3 Floating Cost Trends 
Although still in the precommercial phase of maturity, floating wind technology has gained greater mainstream 
recognition over the past year, partially because of Equinor’s successful deployment and operation of the 
Hywind II pilot project near Peterhead, Scotland. Today, floating wind is generally considered a viable 
technology for the future of offshore wind. Figure 36 depicts LCOE trends estimated by various research 
organizations and consultancies that show a reduction from levels from above $175/MWh (2018) to $70/MWh 
(2030). 

 
Figure 36. Global LCOE estimates for floating technology72 

Sources: WindEurope (2018), Hundleby et al. (2017), Beiter et al. (2017), Wiser et al. (2016), ORE Catapult 
(2018)73 

 

71 For instance, in past German offshore wind auctions, prepermitted lease areas were awarded. 
72 “LBNL” in the figure refers to Berkeley Lab 
73 Estimates from ORE Catapult (2018) were converted from £2012 to $2018 using 2012 exchange rates and applying a cumulative U.S. inflation factor of 
9.4% for the period 2012−2018. The ORE Catapult (2018) estimates reflect demonstration (2018), precommercial (2025), and commercial status (2027). 

7
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Note that the number of sources for floating wind cost is smaller than for the fixed-bottom trends. These 
estimates, except for those provided by ORE Catapult (2018) prior to 2027, assume commercial-scale floating 
wind plants and learning curve benefits commensurate with a mature industry. The blue trend line represents 
an exponential fit of the most recent studies from 2018. This trend line is meant to serve as a visual reference 
to focus attention on the most recent cost projections. Cost estimates assuming a commercial-scale floating 
project size, published prior to 2018, predict higher costs than those published more recently. This might 
reflect more accurate cost data and new data on anticipated fixed-bottom cost reductions that are applicable to 
floating systems, as well as increased optimism that technical challenges can be overcome. 

The anticipated cost reductions between 2015 and 2030 are related to an expected floating deployment 
trajectory that spans from existing single-turbine demonstration projects (2015−2017) to multiple-turbine 
demonstration projects (2017−2022), and finally, to medium- to full-scale commercial projects (early to late 
2020s). Globally, there is currently a wide range of floating technology concepts under consideration that are 
at the multiturbine demonstration phase. 

The cost of floating wind technology is currently based on a small set of data from the first phase of prototypes 
and projects in the design or construction phase. Generally, the potential for cost reduction is high because 
early-stage technology advances usually result in significant cost reductions. In addition, technological and 
commercial developments from fixed-bottom wind systems might translate to floating wind systems. Cost 
estimates from NREL’s geospatial analysis (Beiter et al. 2016; Gilman et al. 2016) indicate that floating costs 
may show a steeper rate of cost reduction than fixed-bottom systems, with the potential for cost parity over the 
next 10 years. The basis for technology-specific cost reduction potential comes from a range of factors, 
including (but not limited to) the ability of floating systems to: 

• Leverage cost reductions, innovations, and experience from fixed-bottom systems 

• Utilize existing supply chains 

• Optimize using lighter components and increased modularity 

• Reduce the number and complexity of construction steps at sea (e.g., by assembling the turbine and 
substructure at quayside) 

• Automate production and fabrication of the floating platforms 

• Access higher wind speeds sufficient to outweigh the higher O&M and installation costs associated with 
greater distances to shore and harsher meteorological conditions. 

For a more detailed discussion of possible methods to reduce the cost of floating systems, see Beiter et al. 
(2016).  
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Primary Database Sources 
• 4C Offshore. 2018. Offshore Wind Farms Intelligence. 

http://www.4coffshore.com/windfarms/request.aspx?id=owfdb. 

• 4C Offshore. 2019. Global Offshore Wind Farms Intelligence. 
http://www.4coffshore.com/windfarms/request.aspx?id=owfdb. 

• Bloomberg New Energy Finance. 2018. Renewable Energy Project Database. 
https://about.bnef.com/. 

• MAKE Consulting. 2018. Global Offshore Wind Power Project Database. 
http://www.consultmake.com/research/databases. 

• WindEurope. 2019. Offshore Wind in Europe: Key trends and statistics 2018. February 2019. 
https://windeurope.org/about-wind/statistics/offshore/european-offshore-wind-industry-key-trends-
statistics-2018/. 
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