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Challenge #1:
Operations with Extreme
penetrations of

distributed PV

Challenge #2:
Communicate and
control with
millions of DERs

Predictive State Estimation

I

Online Multi-Objective Optimization
Based Set-Point Dispatch

EMS / DMS

Broadcast in Existing
Communication System

g m Inverters

Legacy —

Enhanced |
System
Layer

Traditional I
System |
Layer

Telecom &
Data
Layer

Local
Device & |
Control

Layer |

Manage extreme penetrations of solar and other DERs using only a few
measurement points through matrix completion and multi-kernel learning-based
predictive state estimation (PSE) and only a few control nodes dispatched through
dual timescale online multi-objective optimization (OMOO) using voltage-load

sensitivities to guide fast feedback response

Estimate and Forecast Using
Scarce Measurements

Online Control of Limited
Number of Devices

Both Transmission and
Distribution Systems

Minimum Additional
Communication Burden

Advanced Devices &
Legacy Devices
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GO-Solar Key Activities .

Performance targets
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Innovation: Matrix Completion for State Estimation

/ vs. Conventional state estimation \
g9e° - Weighted least squares
Seo | - Objective: Minimize the
weighted residuals

Requires redundant

measurements /

Key idea: Estimate unknown
elements using correlation

min(Rank of matrix X)| New

Objective function

Concept:
Netflix Recommendation System
+ Power Systems Constraints (linearized)

o 1/7 Quantity

Rv} S} i op a1y
_______ 1 = =L — .
o 4: ______ I__+__,—'Node
X = : L
I I
: .
| o
oo |
Unknown < State variables Measurements - Partially known

Constraints Known elements in X = Measurements
(2-point Linearized) power flow eqéiations

[1] Y. Zhang, A. Bernstein, A. Schmitt, and R. Yang, “State Estimation in Low-Observable Distribution Systems Using Matrix Completion,” HICSS-52 conference, 2019.
[2] P. Donti, Y. Liu, A. Schmitt, A. Bernstein, R. Yang, and Y. Zhang, “Matrix Completion for Low-Observability Voltage Estimation,” submitted to IEEE Transactions on

Smart Grid, 2019.

[3] Andrey Bernstein and Emiliano Dall’Anese, “Linear Power-Flow Models in Multiphase Distribution Networks”, presented at the 7th IEEE International Conference
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Example Results

Actual HECO Feeder

— 2576 nodes, 536 loads 5
— Load profiles are aggregated from load pool according to peak load
— 1-minute power flow simulations 5

Distribution of Absolute Percentage Error for Voltage Magnitude
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Usually < 0.1% error
(0.1V on 120V base)

Always < 0.7% error
(0.85V on 120V base)

Even better with more measurements

Similar for Voltage angle (Nearly always <0.25deg at 30%)




Innovation: Multi-Kernel
Learning for State

Forecasting

Goal: Learn the spatiotemporal correlation
between measurements and system states

Kernel Learning Concept

* Use kernel functions to map the input space
to a higher-dimension feature space

e Learn the relationship in the feature space

Input Space Feature Space
Source: R. G. Esfahani and A. A. Mohammad, “Towards an anomaly
detection technique for web services based on kernel methods,” IEEE
Innovations in Information Technology, 2009.

Historical

measurementsﬂxt
Voyy

age
Multi- Kernel

Learning
4
I Future
Future 1
states

Forecast

Expanding to Multi-Kernel
e Kernels for different measurements
* Optimize the combination

DG » Kernels
Power » Kernels
Voltage » Kernels Voltage
g Phasors
Voltage » Kernels °
[ ]
Current » Kernels °
Measurements  Kernels System States -



Input: P and Q at load nodes for the past

1 hour

* Training: 1-minute power flow results for 3 daysE (sliding window)

Frequency

Training
95% ClI: +0.3%

Frequency

Magnitude Forecasting Error (%)

Testing (1/5 of data)
95% Cl: +0.6%

0.012

0.01 -

0.008

0.006 -

0.004

0.002

- Magnitude Forecasting Error (%)

Similar for Angle estimates

: Training <0.2deg, Test <0.4deg NREL |7



OMOO: Two-Time-Scale Optimization

/Slow (every X minutes) \ Planned /Fast (every Y seconds) \

* Solve OPF to produce pa.th forX |« yse online optimization to
setpoints minutes “follow the plan” produced

* Provides nominal by slow-scale optimizer
setpoints for DERs and e Adjusting the setpoints of

K legacy devices / K DERs in real time. /

Control in real time:
o DERs
@ Legacy devices J

A

Maximize customer and

utility/aggregator

objectives
Distribution *  Transmission

feeder system
NREL | 8

Respect electrical limits (e.g., voltage regulation)



Slow Scale OMOOQO — VLSM-based OPF

* Voltage-Load Sensitivity Matrix (VLSM) based mixed-integer linear OPF [4
— Can handle integer constraints for taps/caps

Step 1: Build VLSM (periodically) Step 2: Solve OPF MILP (minutes)
|6V| = VLSM ,||5P|+|VLSM,,||50) MinZ = w1§C + WAV + w3Myeg
oVi| |pn Pn - Pul||9R 9 9n 0 G |90 ¢ . . .
5[/2 B p21 .-_ p2n 5]-_)2 N q21 .-_ q2n 5Q2 —ALaadZ(Pcontral(l)) + AI};VZ contro L(l) +/1ng Qcontrol(l)
: : ' : : E : + Asi( PEral (D) +Ampi(smompm)
51/;1 p nl p n2 p nn 5Pn qnl an qnn 5Qn + Areg ZZ: (MT“P(t) - Mgal’(t))z

Output: Dispatch/set points path for DERs and Legacy Utility Devices

[4] X. Zhu and Y. Zhang, “Coordinative Voltage Control Strategy with Multiple-Resource for Distribution Systems of High PV Penetration,” World Conference on Photovoltaic
Energy Conversion (WCPEC-7), Waikoloa, Hawaii, June 10-15, 2018. NREL | 9



Fast Scale— OMOQOO

» Goal: follow OPF plan Central Controller (CC) € ---------

u Key |deaS: Setpomts
dvertlsement

— Hierarchical control

Local Controller (

— Lots of math with :
implementation
provable bounds T n

— Single-step gradient

e Rather than converging at each
timestep, loosely converge across
fast time steps

[5] A. Bernstein and E. Dall’Anese, “Bi-Level Dynamic Optimization with Feedback,” the 5th IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Montreal, Quebec, Canada, Nov. 2017. NREL | 10



Output power [kW]

OMOO Example Results

Tracking setpoint while maximizing DER objectives
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Net consumption (kWh)
'

Net consumption (kWh)
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Challenge: Data

Step 1: Get enough Data
Step 2: Massage It —

Step 3: Visualize and Clean-up Ny
Step 4: Repeat
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Challenges: Scalability

Issue: Many orders of magnitude larger systems

Ideas: « Near optimality (close can be good enough)
* Decentralized/Distributed approaches

* Decomposition
Issue: How to split?
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Challenge: System Changes

* |ssue: The grid keeps changing
* Things we’re trying on GO-Solar (distribution reconfiguration)
— Known change
* Update PF model, still get accurate estimates
* Working on algorithms to detect change

— Unknown change

* Measure Error
— If high error: Revert to traditional methods

 Retrain

NREL | 14
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