

Challenges for Solar Distribution Planning and Operations Workshop

AGENT-BASED COORDINATION SCHEME FOR PV INTEGRATION (ABC4PV)

Awarded to: CMU, NRECA, Aquion Energy

Presented by: Panayiotis Moutis (CMU)

Overview

- ABC4PV main idea and objectives
- Focusing on Consensus+Innovation (C+I) framework
- What was the case for C+I before ABC4PV
- What was achieved for C+I through the ABC4PV

Carnegie Mellon University

Roadmap Approach:

- Explore exchanges potential
- Coordinate at scales
- Tend to battery lifetime
- pricing effects

Approach: Inter-unit collaboration

- Agent-based distributed algorithm:
 - Units communicate and share information
 - Communication with system operator possible, not required
 - Computations carried out locally

Approach: Distributed optimization framework

- Form of updates (based on the Lagrangian multipliers and slack vars)
 - Mathematical formulation based on consensus + innovation approach:

$$\lambda_{j}^{(i+1)} = \lambda_{j}^{(i)} - \beta_{i} \sum_{l \in \omega_{j}} \left(\lambda_{j}^{(i)} - \lambda_{l}^{(i)}\right) - \underbrace{\alpha_{i} \hat{d}_{j}^{(i)}}_{innovation}$$

where λ is the consensus variable and innovation term ensures

$$\sum_{j=1}^{J} \hat{d}_{j}(\lambda_{j}) = 0,$$
 Considered Application:
- Consensus ensures cost optimality
- Innovation fulfills power balance &

- Innovation fulfills power balance & equipment constraints

What is Consensus?

- Think of Gossip, but reliable...
- Gossip = exchange of info at small scale of interaction
- Reliable = minimum info exchange
- Required to agree on a common value across stakeholders, e.g. marginal price of generation

Example:

20 players are dealt each one card from a 21-cards deck. Which card wasn't dealt to any of the players?

Why do we need Innovation?

- Innovation terms are the derivatives of the Lagrangian with respect to the updated variable
- Unless they become constant, there is no convergence
- All updates include innovation terms, but not all include consensus term

ABC4PV problem formulation

$$\begin{split} \text{minimize } & \sum_{i \in g} C \Big(P_{g,i} \Big) \\ \text{s.t.} & P_{g,i} - P_{l,i} = \sum_{j \in NBi} \Big(g_{ij} - b_{ij} \Big) \cdot (\theta_i - \theta_j) \\ & Q_{g,i} - Q_{l,i} = \sum_{j \in NBi} \Bigg[(\theta_i - \theta_j) \cdot \left(\frac{g_{ij}^2}{b_{ij}} - g_{ij} \right) + \frac{|v_i|}{b_{ij}} \Big(-g_{ij}^2 - b_{ij}^2 \Big) + \frac{|v_j|}{b_{ij}} \cdot \Big(g_{ij}^2 + b_{ij}^2 \Big) \Bigg] \\ & P_{g,i,m} \leq P_{g,i} \leq P_{g,i,M} \quad \& \quad Q_{g,i,m} \leq Q_{g,i} \leq Q_{g,i,M} \\ & |v_{i,m}| \leq |v_i| \leq |v_{i,M}| \\ & \Big(g_{ij} - b_{ij} \Big)^2 \cdot (\theta_i - \theta_j)^2 + \Bigg[(\theta_i - \theta_j) \cdot \left(\frac{g_{ij}^2}{b_{ij}} - g_{ij} \right) + \frac{|v_i|}{b_{ij}} \Big(-g_{ij}^2 - b_{ij}^2 \Big) + \frac{|v_j|}{b_{ij}} \cdot \Big(g_{ij}^2 + b_{ij}^2 \Big) \Bigg]^2 \leq S_{ij,M}^2 \quad * \end{split}$$

*can be easily expressed linearly

COPF approximation formulation in the C+I f/w (1/2)

$$\begin{split} L &= \sum_{l \in \mathcal{G}} C \Big(P_{g,i} \Big) + \sum_{i \in \mathcal{B}} \lambda_i \cdot \Bigg[- P_{g,i} + P_{l,i} + \sum_{j \in NBl} \Big(g_{ij} - b_{ij} \Big) \cdot (\theta_i - \theta_j) \Bigg] + \\ &+ \sum_{i \in \mathcal{B}} \mu_i \cdot \Bigg\{ - Q_{g,i} + Q_{l,i} + \sum_{j \in NBl} \Bigg[(\theta_i - \theta_j) \cdot \Bigg(\frac{g_{ij}^2}{b_{ij}} - g_{ij} \Bigg) + \frac{|v_i|}{b_{ij}} \Big(- g_{ij}^2 - b_{ij}^2 \Big) + \frac{|v_j|}{b_{ij}} \cdot \Big(g_{ij}^2 + b_{ij}^2 \Big) \Bigg] \Bigg\} + \\ &+ \sum_{i \in \mathcal{B}} u_{P,i} \cdot \Big(P_{g,i} - P_{g,i,M} + T_{P,i}^2 \Big) + \sum_{i \in \mathcal{B}} l_{P,i} \cdot \Big(- P_{g,i} + P_{g,i,m} + K_{P,i}^2 \Big) + \\ &+ \sum_{i \in \mathcal{B}} u_{Q,i} \cdot \Big(Q_{g,i} - Q_{g,i,M} + T_{Q,i}^2 \Big) + \sum_{i \in \mathcal{B}} l_{Q,i} \cdot \Big(- Q_{g,i} + Q_{g,i,m} + K_{Q,i}^2 \Big) + \\ &+ \sum_{i \in \mathcal{B}} \sum_{j \in NBi} u_{\ln,ij} \Big(g_{ij} - b_{ij} \Big)^2 \cdot (\theta_i - \theta_j)^2 + \\ &+ \sum_{i \in \mathcal{B}} \sum_{j \in NBi} u_{\ln,ij} \Big(g_{ij} - b_{ij} \Big)^2 \cdot (\theta_i - \theta_j)^2 + \\ &+ \Big[(\theta_i - \theta_j) \cdot \left(\frac{g_{ij}^2}{b_{ij}} - g_{ij} \right) + \frac{|v_i|}{b_{ij}} \Big(- g_{ij}^2 - b_{ij}^2 \Big) + \frac{|v_j|}{b_{ij}} \cdot \Big(g_{ij}^2 + b_{ij}^2 \Big) \Bigg]^2 - S_{ij,M}^2 + T_{l,ij}^2 \Bigg\} \end{split}$$

COPF approximation formulation in the C+I f/w (2/2)

$$\lambda_{i}(k+1) = \lambda_{i}(k) - \beta_{\lambda} \frac{\partial L}{\partial \theta_{i}} - \alpha_{\lambda} \frac{\partial L}{\partial \lambda_{i}} \qquad \mu_{i}(k+1) = \mu_{i}(k) - \beta_{\mu} \frac{\partial L}{\partial |v_{i}|} - \alpha_{\mu} \frac{\partial L}{\partial \mu_{i}}$$

$$\theta_{i}(k+1) = \theta_{i}(k) + \beta_{\theta} \frac{\partial L}{\partial \lambda_{i}} \qquad |v_{i}(k+1)| = \mathbb{P}\left(|v_{i}(k)| + \beta_{V} \frac{\partial L}{\partial \mu_{i}}\right)$$

$$P_{g,i}(k+1) = \mathbb{P}\left(P_{g,i}(k) - \alpha_{P} \cdot \left(\frac{\partial C(P_{g,i})}{\partial P_{g,i}} - \lambda_{i}(k+1)\right)\right) = \mathbb{P}\left(P_{g,i}(k) - \alpha_{P} \cdot \left(2 \cdot a_{g} \cdot P_{g,i} + b_{g} - \lambda_{i}(k+1)\right)\right)$$

$$Q_{g,i}(k+1) = (Q_{g,i}(k) + \alpha_Q \cdot \mu_i(k+1))$$

$$u_{|v|,i}(k+1) = (u_{|v|,i}(k) + \beta_{|v|}(|v_i| - |v_{i,M}|))$$

$$l_{|v|,i}(k+1) = (l_{|v|,i}(k) + \beta_{|v|}(-|v_i| + |v_{i,m}|))$$

$$u_{\ln,ij}(k+1) = \mathbf{P}\left(u_{\ln,ij}(k) + \beta_{\ln} \frac{\partial L}{\partial u_{\ln,ij}}\right)$$

Proof of convergence of the C+I – Why?

- Ensures that a control set-point exists under ALL operating conditions
- If the control set-point is fixed, there is insight about the nature of the fixed point => Optimal in our case
- Convergence affects the cyber-security assessment of the tool
- Before the ABC4PV, convergence was proved <u>only</u> for the unconstrained DC OPF formulation... The one at hand is an "alternative" of the decoupled OPF

Proof of convergence of the ABC4PV C+I (1/2)

• Iteration Matrix (excl. ineq. constr.)

• P and Q are monotonic sequences =>
$$\begin{bmatrix}
\lambda_1 & \lambda_2 & 0 & \lambda_3 & \lambda_4 & 0 \\
0 & \mu_1 & \mu_2 & \mu_3 & 0 & \mu_4 \\
0 & 0 & v_1 & v_2 & 0 & v_3 \\
0 & 0 & 0 & \theta_1 & \theta_2 & 0 \\
0 & q_1 & 0 & 0 & 0 & q_2
\end{bmatrix}$$
• P and Q are monotonic sequences =>
$$\begin{bmatrix}
\lambda_1 & \lambda_2 & 0 & 0 \\
0 & \mu_1 & \mu_2 & \mu_3 \\
0 & 0 & v_1 & v_2 \\
0 & 0 & 0 & \theta_1
\end{bmatrix}$$

P and Q are monotonic sequences =>
$$\begin{vmatrix} 0 & \mu_1 & \mu_2 & \mu_3 \\ 0 & 0 & v_1 & v_2 \\ 0 & 0 & 0 & \theta_1 \end{vmatrix}$$

- Convergence conditions (ρ <1) properly met
- Updates of the power quality & line limit constraints

$$u_{|v|,i}(k+1) = \mathbb{P}\left(u_{|v|,i}(k) + \beta_{|v|}(v_i|-|v_{i,M}|)\right)$$

i.e. persistent unitary eigenvalues (non-convergent in this context)

Proof of convergence of the ABC4PV C+I (2/2)

Rewriting the updates in the lagrangian form

$$u_{|v|,i}(k+1) = \mathbb{P}\left(u_{|v|,i}(k) + \beta_{|v|} \frac{\partial L}{\partial u_{|v|,i}}\right)$$

- Of the gradient descent form
- Convergent to a fixed point if properly bounded

QED.

Improving Rate of ABC4PV COPF Convergence - Heuristic

- - Step 1: for all α_x & β_x determine min/max value for convergence
 - Step 2: for all α_x β_x exhaustively explore between min/max values of convergence
 - Step 3: for all α_x β_x not in G_{itop} , set minimum α_x β_x from Step 2

Rate of Convergence Assessment (10-bus system)

Bus	P _{load,n} (kW)	P _{DG,n} (kW)	BusK	BusL	Туре	Length (m)
2	500	130	1	2	ACSR-95	1000
3	200	50	2	3	ACSR-95	5000
4	500	130	3	4	ACSR-95	1000
5	300	75	4	5	ACSR-95	500
6	100	25	5	6	ACSR-95	1000
7	200	50	6	7	ACSR-95	500
8	300	75	7	8	ACSR-95	1000
9	500	130	8	9	ACSR-95	500
10	200	50	9	10	ACSR-95	1000

DG f/c	Convergence		
Error Intl	time (s)		
±10%	0.9688±0.9588		
±20%	0.8954±0.4638		
±30%	1.2313±0.5601		
±40%	1.3811±0.4382		
±50%	1.5283±0.5044		
No DG	Convergence		

±40%	1.3811±0.4382	
±50%	1.5283±0.5044	
No DG	Convergence	
units w/	time (s)	
random		
3	0.0245±0.0134	
6	0.0456±0.0228	
12	0.0300±0.0156	
24	0.0048±0.0077	
48	0.3344±0.3068	
96	1.1879±0.4956	
192	2.0577±1.0573	

Load f/c Error Intl	Convergence time (s)	
±10%	0.9792±0.4318	
±20%	1.5562±0.6775	

No of loads	Convergence	
w/ random	time (s)	
3	0.4234±0.0760	
6	0.6920±0.0641	
12	1.0727±0.0510	
24	1.5146±0.0855	
48	2.3048±0.5754	

SETO Workshop May 2019

Left: cold start, Left: hot start

Rate of Convergence Assessment (Ikaria R-21 feeder)

55 load/DG buses

DG f/c Error Intl	Convergence time (s)	
±10%	0.1203±0.0015	
±20%	2.1362±6.0266	

Load f/c	Convergence	
Error Intl	time (s)	
±10%	3.3830±7.5155	

No DG units w/ random	Convergence time (s)
3	0.0808±0.0007
6	0.0945±0.0005
12	0.1040±0.0002
24	0.1084±0.0002
48	0.1115±0.0007
96	0.1620±0.0640
192	0.7121±1.3419

No of loads w/ random	Convergence time (s)
3	0.0791±0.1035
6	0.0755±0.0802
12	0.0904±0.0881
24	0.2444±0.5699
48	0.7432±1.9187

P updates Q updates 90 40 40 30 20 10 10 11 2 3 4 5 66 ×10⁶

Concerns for Path forward

C+I for convexified formulations?

- Explicit method optimizing acceleration parameters?
- Any concern/thought you would like to add?

Questions?