# Phasor-Based Control for Scalable PV Integration





Alexandra von Meier

**University of California, Berkeley** 

Project partners: LBNL, Univ. of Michigan OPAL-RT, GridBright, PingThings, PG&E

- Resources act to maintain a target voltage phasor difference (magnitude V and angle  $\delta$ ) between a pair of locations.
- As state variables, voltage phasors
  encapsulate all information about real and
  reactive power flow on the network.

#### **Hierarchical layers:**

Supervisory PBC computes phasor control targets at chosen nodes

#### **Local PBC drives resources to meet targets**

Maintaining phasor targets rejects
 disturbances and prioritizes local network
 constraints, under arbitrarily high solar
 penetration levels.

**ENERGISE Project DE-EE0008008** 

### Enabling Technology: µPMU

Micro - Phasor Measurement Units (μPMUs)

developed through our Berkeley team's ARPA-E OPEN 2012 project "Micro-Synchrophasors for Distribution Systems"

make it possible to measure voltage magnitudes and phase angles with meaningful precision for distribution power flows





www.powerstandards.com





## Enabling Technology: µPMU

Micro - Phasor Measurement Units (μPMUs)

developed through our Berkeley team's ARPA-E OPEN 2012 project "Micro-Synchrophasors for Distribution Systems"

make it possible to measure voltage magnitudes and phase angles with meaningful precision for distribution power flows





What should Resource 1 be doing?

The desired injection P<sub>1</sub>, Q<sub>1</sub> depends on the behavior of loads, other DER and network topology.





#### What should Resource 1 be doing?

The desired injection P<sub>1</sub>, Q<sub>1</sub> depends on the behavior of loads, other DER and network topology.

Phasor profile  $V_0 - V_1$ 

- reflects changes in P<sub>2</sub>, Q<sub>2</sub> and P<sub>3</sub>, Q<sub>3</sub> whereas net power P<sub>0</sub>, Q<sub>0</sub> may not
- reflects changes in topology whereas net power  $P_0$ ,  $Q_0$  may not
- remains relevant to local operating constraints
- helps co-optimize real and reactive power
- allows resources to respond directly to behavior of other DERs without compromising privacy





### How should Resource 2 respond to a contingency?

If one transmission line fails, the network impedance between 1 and 2 will roughly double

Scheduled power flows  $P_{12}$ ,  $Q_{12}$  may exceed thermal or stability limits of the remaining line Resource 2 has no way of knowing whether its scheduled P, Q injection is still safe for the grid





#### How should Resource 2 respond to a contingency?

#### If one transmission line fails, the network impedance between 1 and 2 will roughly double

Scheduled power flows  $P_{12}$ ,  $Q_{12}$  may exceed thermal or stability limits of the remaining line Resource 2 has no way of knowing whether its scheduled P, Q injection is still safe for the grid **However:** The profile  $V_1 - V_2$  instantly reveals stress on the transmission path By tracking the phasor difference, Resource 2 restores power flow on the remaining line to the previous value of  $\frac{1}{2}$  ( $P_{12}$ ,  $Q_{12}$ )

# Supervisory Phasor-Based Controller (S-PBC) assigns phasor targets

Supervisory controller performs a power flow optimization, whose results it expresses in terms of target phasors at performance nodes

- PBC is agnostic to the optimization criteria
- Optimization time step may be seconds or minutes

S-PBC uses a suitable compromise between full nonlinear and linearized power flow for computational efficiency



# Local Phasor-Based Controller (L-PBC) tracks phasor targets



Voltage magnitude (left) and phase angle (right) tracking by a three-phase local controller in response to a large step change in load elsewhere on the same distribution circuit



Local controller recruits one or multiple distributed energy resources

- actuators may include PV inverters, storage, controllable loads
- may be single- or three-phase
- may provide real and/or reactive power

Simulations show tracking phasor target, rejecting disturbances

Control time step ~ 0.5 to 1 sec

Several L-PBC algorithms are being tested



# We are so excited to try this out!



LBNL FLEXLAB







Ping**Things** 





Questions? vonmeier@berkeley.edu

