Si-Cr-Al-Mn Alloy for High Specific Resistivity

Contract Number DE-EE0007866 AK Steel Corp. / Oak Ridge National Laboratories / Regal Beloit Corp. BP2 (July 2018- June 2019)

> J. W. Schoen, Principal Research Engineer Research & Innovation Center AK Steel Corporation

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 12, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Project Title</u>: Si-Cr-Al-Mn Alloy for High Specific Resistivity

<u>Timeline:</u>

Project Start:	5/01/2017
Budget Period End:	7/31/2019
Project End :	7/31/2020

Barriers and Challenges:

- Processability
- Cost raw materials and processing
- Grain size and texture control

AMO MYPP Connection:

- Next Generation Electric Machines
- Target 3.4: Increase the efficiency of targeted electric machines by 2–3%

Project Budget and Costs:

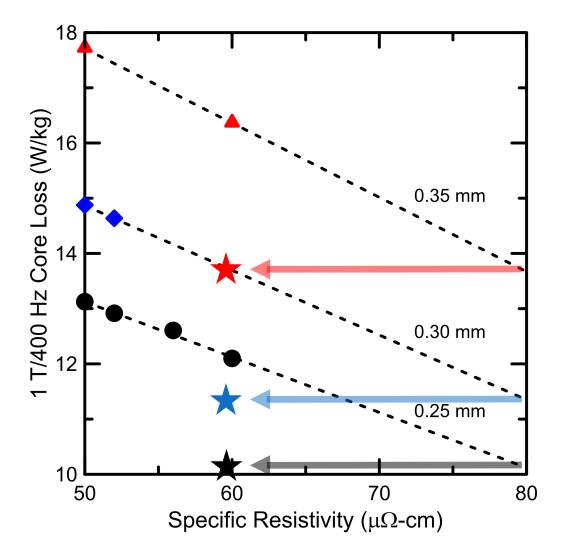
Budget	DOE Share	Cost Share	Total	Cost Share %		
Overall	\$1,800,000	\$520,269	\$2,020,269	22.4%		
Approved (BP-1,2)	\$1,392,834	\$400,687	\$1,793,521	22.3%		
Costs as of 4/1/19	\$597,751	\$246,544	\$1,104,295	22.3%		

Project Team and Roles:

AK Steel Corporation

- Jerry Schoen, Product Research
- Tom Thomas, Applications and Advanced Engineering
- Garrett Angus, Product Research
- Chris Jones, Product Research
- Erik Pavlina, Product Research
- Ed Case, Director of Research and Innovation *Regal Beloit*
- Paul Knauer, Technology Manager Oak Ridge National Laboratory
- Timothy Burress, Electric Machines Team Lead

Project Objectives

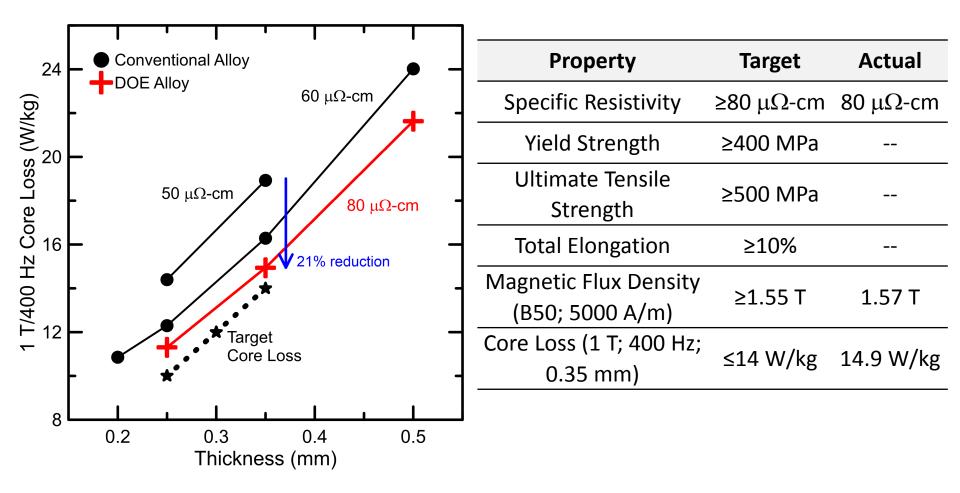

- Objective: >30% improvement in 400 Hz core loss versus existing nonoriented electrical steels (NOES)
- Problem: Achieve a combined chemistry and processing solution to make a NOES product having specific resistivity of 75–80 $\mu\Omega$ -cm (comparable to Fe-6.5Si) at a manufacturing cost incrementally above a 3% Si steel
- Approach (BP1): Laboratory melt and test a series of Si-Cr-Al-Mn steels to target resistivity levels
 - A. Maintain maximum compatibility with conventional cold-rolled NOES manufacturing method(s)
 - B. Determine magnetic/metallurgical characteristics
- Approach (BP2 and BP3): Industrially melt and process a 80 $\mu\Omega\text{-cm}$ Si-Cr-Al-Mn steel
 - A. Determine magnetic/metallurgical characteristics
 - B. Design / build / test series of 5HP induction motors using Si-Cr-Al-Mn steel and conventional NOES

Technical Innovation

- Core loss reduced in conventional NOES by
 - Using thinner laminations
 - Increasing specific resistivity via alloying \rightarrow 6+ weight percent silicon
- Limitations of conventional methods
 - Slow and expensive steel processing
 - Extremely brittle
 - Difficulty blanking

Element	Resistivity Multiplier (μΩ-cm/at%)	Effect on Strength	Effect on Ductility	\$/μΩ-cm	Other Barriers to Use
Si	5.8	Strong	Strong	Low	Embrittlement >3.5 wt%
AI	5.7	Moderate	Strong	Low	Pyrothermic during solidification, AIN precipitation
Mn	4.7	Strong	Weak	Low	Grain growth sensitive to S; challenging melt control
Cu	4.8	Strong	Moderate	High	Cost; precipitation >1 wt%
Cr	5.9	Weak	Weak	Moderate	Cost
Мо	7.2	Strong	Weak	High	Cost
Ni	0.9	Moderate	Weak	High	Cost

Technical Innovation


Equivalent core loss at heavier gauges compared to conventional NOES

Technical Approach

- Si-Cr-Al-Mn alloying strategy
 - Maintain silicon levels <3.25 weight percent
 - Substantial chromium additions (>4 weight percent) for specific resistivity → limited degradation
 of mechanical properties
- Laboratory assessment electrical, magnetic, and mechanical properties (BP1, AK, ORNL)
 - Extend data for Fe-Si-Cr/Al/Mn/Mo alloys
 - Identification of processing windows for plant trials
 - Assessment of manufacturability
- Scale-up from laboratory to plant trials (BP2 in progress, AK)
- Motor design, manufacture, and performance evaluation (BP3, AK, RB, ORNL)

				Mechanical Properties			Core Loss				Magnetic Permeability	
Steel	Thickness (mm)	Saturation Magnetization (T)	Resistivity (μΩ-cm)	YS (MPa)	UTS (MPa)	TEL (%)	1.0 T, 60 Hz	1.5 T, 60 Hz	1.0T, 400 Hz	1.0 T, 1000 Hz	B25 (T)	В50 (Т)
M-15	0.47	2.01	50	360	490	23	1.42	3.28	24.4	113	1.56	1.65
M-15	0.35	2.01	50	360	490	23	1.35	3.19	18.9	80	1.56	1.65
	0.35		80	400– 500	500– 600	≥10	TBD	TBD	<14	<60		
Target	0.30	1.88-1.90							<12	<50	1.47	1.57
	0.25								<10	<40		

Results and Accomplishments – BP2

- Initial coils finished (May 2019) planned optimization still required
- Goal of 35% reduction in core loss compared to 0.35 mm 50 $\mu\Omega$ -cm steel

Transition Plan

- Working with award partners to evaluate magnetic properties
- Perform manufacture and usage analysis for the transportation sector
 - A. Market Assessment
 - B. Manufacturing Cost
 - C. Capital Investment
- Continued formal plant trials to refine processing windows and properties/performance
- Utilize existing relationships with OEMs to evaluate steels for EV application

